Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources
Abstract
:1. Introduction
2. Principles and Simulations
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, N.; Xu, X.; Zhang, Z.; Gao, F.; Wang, X. Advanced interferometric fiber optic gyroscope for inertial sensing: A review. J. Light. Technol. 2023, 41, 4023–4034. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Kumar, S.; Marques, C.; Min, R.; Li, X. Recent advancements in resonant fiber optic gyro—A review. IEEE Sens. J. 2022, 22, 18240–18252. [Google Scholar] [CrossRef]
- Lefèvre, H.C. The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology. Opt. Fiber Technol. 2013, 19, 828–832. [Google Scholar] [CrossRef]
- Ciminelli, C.; Dell’Olio, F.; Campanella, C.E.; Armenise, M.N. Photonic technologies for angular velocity sensing. Adv. Opt. Photonics 2010, 2, 370–404. [Google Scholar] [CrossRef]
- Petrov, A.B.; Gumenyuk, R.; Alimbekov, M.S.; Zhelezov, P.E.; Kikilich, N.E.; Aleynik, A.S.; Meshkovsky, I.K.; Golant, K.M.; Chamorovskii, Y.K.; Odnoblyudov, M.; et al. Broadband superluminescent erbium source with multiwave pumping. Opt. Commun. 2018, 413, 304–309. [Google Scholar] [CrossRef]
- Zhu, L.; He, W.; Zhang, Y.; Luo, F.; Dong, M. A high flattening C+ L band broadband source based on single pump and the same erbium-doped fiber. Optik 2014, 125, 4659–4662. [Google Scholar] [CrossRef]
- Liu, C.; Wu, X.; Zhu, J.; He, N.; Li, Z.; Zhang, G.; Zhang, L.; Ruan, S. Radiation-resistant Er3+-doped superfluorescent fiber sources. Sensors 2018, 18, 2236. [Google Scholar] [CrossRef]
- Ponosova, A.A.; Azanova, I.; Mironov, N.K.; Yashkov, M.V.; Riumkin, K.E.E.; Sharonova, Y.O.; Melkumov, M. Erbium-doped optical fibre with enhanced radiation resistance for superluminescent fibre sources. Quantum Electron. 2019, 49, 693. [Google Scholar] [CrossRef]
- Xie, L.; Gong, X.; Zhang, B.; Fan, X.; Zhang, C. Research on temperature dependent mean wavelength stability of Erbium-doped fiber super fluorescent source for fiber optic gyroscopes. In Proceedings of the AOPC 2017: Fiber Optic Sensing and Optical Communications, Beijing, China, 4–6 June 2017; pp. 388–393. [Google Scholar]
- Wang, A.; Ou, P.; Feng, L.; Zhang, C.; Cui, X.; Liu, H.; Gan, Z. High-stability Er-doped superfluorescent fiber source incorporating photonic bandgap fiber. IEEE Photonics Technol. Lett. 2009, 21, 1843–1845. [Google Scholar] [CrossRef]
- Skalský, M.; Hnidka, J.; Havránek, Z. Improvement of the Temperature Stability of the Erbium-Doped Superfluorescent Fiber Source by Tuning the Reflectivity of the Fiber End. J. Light. Technol. 2022, 41, 1843–1850. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, D.; Sun, X. Stabilization of a superfluorescent fiber source with high performance erbium doped fibers. Opt. Fiber Technol. 2013, 19, 264–268. [Google Scholar] [CrossRef]
- Chen, X.; Ma, L.; Liu, B.-H.; Hao, Y. Design of ASE source for high precision FOG. In Proceedings of the AOPC 2019: Optical Fiber Sensors and Communication, Beijing, China, 5–8 August 2019; pp. 387–394. [Google Scholar]
- Zhang, E.; Yang, L.; Xue, B.; Gao, Z.; Zhang, Y.; Yam, S.S.-H. High thermal-stability Er-doped superfluorescent fiber source with a vertical cleaved fiber tail. Opt. Fiber Technol. 2020, 58, 102262. [Google Scholar] [CrossRef]
- Wysocki, P.F.; Digonnet, M.J.; Kim, B.Y.; Shaw, H.J. Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications. J. Light. Technol. 1994, 12, 550–567. [Google Scholar] [CrossRef]
- Falquier, D.; Digonnet, M.; Shaw, H. A polarization-stable Er-doped superfluorescent fiber source including a Faraday rotator mirror. IEEE Photonics Technol. Lett. 2000, 12, 1465–1467. [Google Scholar] [CrossRef]
- Wang, A. High stability Er-doped superfluorescent fiber source improved by incorporating bandpass filter. IEEE Photonics Technol. Lett. 2010, 23, 227–229. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Liu, C.-X.; Ruan, S.-C. High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber. Appl. Phys. B 2014, 114, 433–438. [Google Scholar] [CrossRef]
- Ou, P.; Cao, B.; Zhang, C.; Li, Y.; Yang, Y. Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fibre grating. Electron. Lett. 2008, 44, 1. [Google Scholar] [CrossRef]
- Giles, C.R.; Desurvire, E. Modeling erbium-doped fiber amplifiers. J. Light. Technol. 1991, 9, 271–283. [Google Scholar] [CrossRef]
- Saha, M.; Sen, R. Vapor phase doping process for fabrication of rare earth doped optical fibers: Current status and future opportunities. Phys. Status Solidi (a) 2016, 213, 1377–1391. [Google Scholar] [CrossRef]
- Sharif, K.M.; Omar, N.Y.; Zulkifli, M.; Yassin, S.M.; Abdul-Rashid, H. Fabrication of alumina-doped optical fiber preforms by an MCVD-metal chelate doping method. Appl. Sci. 2020, 10, 7231. [Google Scholar] [CrossRef]
- Dhar, A.; Paul, M.C.; Pal, M.; Mondal, A.K.; Sen, S.; Maiti, H.S.; Sen, R. Characterization of porous core layer for controlling rare earth incorporation in optical fiber. Opt. Express 2006, 14, 9006–9015. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Pal, A.; Sen, R. Vapor phase doping of rare-earth in optical fibers for high power laser. IEEE Photonics Technol. Lett. 2013, 26, 58–61. [Google Scholar] [CrossRef]
- Sekiya, E.; Barua, P.; Saito, K.; Ikushima, A. Fabrication of Yb-doped silica glass through the modification of MCVD process. J. Non-Cryst. Solids 2008, 354, 4737–4742. [Google Scholar] [CrossRef]
- Naji, A.; Hamida, B.A.; Cheng, X.; Mahdi, M.A.; Harun, S.; Khan, S.; Al-Khateeb, W.; Zaidan, A.; Zaidan, B.; Ahmad, H. Review of Erbium-doped fiber amplifier. Int. J. Phys. Sci. 2011, 6, 4674–4689. [Google Scholar]
- Aubry, M.; Mescia, L.; Morana, A.; Robin, T.; Laurent, A.; Mekki, J.; Marin, E.; Ouerdane, Y.; Girard, S.; Boukenter, A. Temperature influence on the radiation responses of erbium-doped fiber amplifiers. Phys. Status Solidi (a) 2021, 218, 2100002. [Google Scholar] [CrossRef]
- Chu, T.; Wang, P.; Zhu, C. Modeling of active fiber loop ring-down spectroscopy considering gain saturation behavior of EDFA. J. Light. Technol. 2019, 38, 966–973. [Google Scholar] [CrossRef]
- Bolshtyansky, M.; Wysocki, P.; Conti, N. Model of temperature dependence for gain shape of erbium-doped fiber amplifier. J. Light. Technol. 2000, 18, 1533. [Google Scholar] [CrossRef]
- Zhou, Y.; Gai, N.; Wang, J.; Chen, F.; Yang, G. Effect of hydroxyl groups on Er3+-doped bismuth-borate glass and fiber. J. Lumin. 2009, 129, 277–282. [Google Scholar] [CrossRef]
- Mescia, L.; Bia, P.; Girard, S.; Ladaci, A.; Chiapperino, M.A.; Robin, T.; Laurent, A.; Cadier, B.; Boutillier, M.; Ouerdane, Y. Temperature-Dependent Modeling of Cladding-Pumped Er3+/Yb3+-Codoped Fiber Amplifiers for Space Applications. J. Light. Technol. 2018, 36, 3594–3602. [Google Scholar] [CrossRef]
- Jazi, M.K.; Shahi, S.; Hekmat, M.; Saghafifar, H.; Khuzani, A.; Khalilian, H.; Baghi, M. The evaluation of various designs for a C and L band superfluorescent source based erbium doped fiber. Laser Phys. 2013, 23, 065104. [Google Scholar] [CrossRef]
Parameters | EDF1 | EDF2 | EDF3 |
---|---|---|---|
Numerical aperture (NA) | 0.225 | 0.230 | 0.227 |
Peak Absorption at 1530 nm (dB/m) | 18 | 23 | 9.8 |
Background Loss at 1200 nm (dB/km) | ≤10 | 5.05 | 5.54 |
Cutoff Wavelength (nm) | 940 | 1220 | 970 |
Mode Field Diameter at 1550 nm (µm) | 5.65 | 5.30 | 5.50 |
Erbium Ion Concentration (ppm) | 2200 | 2200 | 1135 |
Erbium Ion Density () | 1.74 | 1.74 | 0.9 |
Core Diameter (µm) | 3.18 | 4.05 | 3.28 |
Cladding Diameter (µm) | 125 | 125 | 125 |
Coating Diameter (µm) | 245 | 245 | 245 |
Prooftest Level (kpsi) | 200 | 200 | 200 |
Mean Wavelength Shift (ppm) | Spectrum Width Change Rate (%) | Output Power Change Rate (%) | Power Conversion Efficiency (%) | |
---|---|---|---|---|
EDF1 | 31.5 | 2.1 | 6 | 36.6 |
EDF2 | 20.35 | 1.8 | 5.8 | 40.03 |
EDF3 Length (m) | Spectrum Width Change Rate (%) | Output Power Change Rate (%) | Power Conversion Efficiency (%) |
---|---|---|---|
3 | 51.1 | 2.3 | 23.05 |
4 | 42.7 | 1.7 | 40.73 |
5 | 20.3 | 1.5 | 50.84 |
6 | 14.2 | 1.3 | 53.6 |
7 | 47 | 1.8 | 53.31 |
8 | 89.4 | 2.1 | 52.67 |
9 | 138.2 | 2.2 | 51.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhang, H.; Lin, W.; Xu, W. Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources. Photonics 2025, 12, 115. https://doi.org/10.3390/photonics12020115
Guo J, Zhang H, Lin W, Xu W. Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources. Photonics. 2025; 12(2):115. https://doi.org/10.3390/photonics12020115
Chicago/Turabian StyleGuo, Jia, Hao Zhang, Wenbin Lin, and Wei Xu. 2025. "Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources" Photonics 12, no. 2: 115. https://doi.org/10.3390/photonics12020115
APA StyleGuo, J., Zhang, H., Lin, W., & Xu, W. (2025). Optimization of Erbium-Doped Fiber to Improve Temperature Stability and Efficiency of ASE Sources. Photonics, 12(2), 115. https://doi.org/10.3390/photonics12020115