A New Method to Enhance the Light–Matter Interaction by Controlling the Resonance of Electrons
Abstract
:1. Introduction
2. Model
3. Results and Discussion
3.1. The Characteristics of Electron Under the Electrostatic Field
3.2. The Distribution of Electric Intensity Under the Propagating SPPs
3.3. The Distribution of Electric Intensity Under the Electrostatic Field and Propagating SPPs Simultaneous
3.4. The Resonance of Electrons
3.4.1. Analysis of Amplitude
3.4.2. Analysis of Electric Field Intensity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pala, R.A.; Shimizu, K.T.; Melosh, N.A.; Brongersma, M.L. A Nonvolatile Plasmonic Switch Employing Photochromic Molecules. Nano Lett. 2008, 8, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, D.C.; Nader, N.; Myers, J.; Hendrickson, J.R.; Cleary, J.W.; Walker, D.E.; Chen, K.-H.; Liu, Y.; Mou, S. Edge Doping Effect to the Surface Plasmon Resonances in Graphene Nanoribbons. J. Phys. Chem. C 2019, 123, 19820–19827. [Google Scholar] [CrossRef]
- Behnia, S.; Fathizadeh, S.; Javanshour, E.; Nemati, F. Light-Driven Modulation of Electrical Current through DNA Sequences: Engineering of a Molecular Optical Switch. J. Phys. Chem. B 2020, 124, 3261–3270. [Google Scholar] [CrossRef] [PubMed]
- Bouillard, J.-S.G.; Dickson, W.; O’connor, D.P.; Wurtz, G.A.; Zayats, A.V. Low-Temperature Plasmonics of Metallic Nanostructures. Nano Lett. 2012, 12, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-S.; Lassiter, J.B.; Swanglap, P.; Sobhani, H.; Khatua, S.; Nordlander, P.; Halas, N.J.; Link, S. A Plasmonic Fano Switch. Nano Lett. 2012, 12, 4977–4982. [Google Scholar] [CrossRef]
- Chen, T.; Tong, F.; Enderlein, J.; Zheng, Z. Plasmon-Driven Modulation of Reaction Pathways of Individual Pt-Modified Au Nanorods. Nano Lett. 2020, 20, 3326–3330. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.D.; de Abajo, F.J.G. Single-Plasmon Thermo-Optical Switching in Graphene. Nano Lett. 2019, 19, 3743–3750. [Google Scholar] [CrossRef]
- Cox, J.D.; de Abajo, F.J.G. Nonlinear Graphene Nanoplasmonics. Acc. Chem. Res. 2019, 52, 2536–2547. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Zhao, J.; Zhao, W.; Zhang, S.; Xu, H.; Xiong, Q. Ultrafast Modulation of Exciton–Plasmon Coupling in a Monolayer WS2–Ag Nanodisk Hybrid System. ACS Photonics 2019, 6, 2832–2840. [Google Scholar] [CrossRef]
- Emboras, A.; Niegemann, J.; Ma, P.; Haffner, C.; Pedersen, A.; Luisier, M.; Hafner, C.; Schimmel, T.; Leuthold, J. Atomic Scale Plasmonic Switch. Nano Lett. 2016, 16, 709–714. [Google Scholar] [CrossRef]
- Agrawal, A.; Susut, C.; Stafford, G.; Bertocci, U.; McMorran, B.; Lezec, H.J.; Talin, A.A. An Integrated Electrochromic Nanoplasmonic Optical Switch. Nano Lett. 2011, 11, 2774–2778. [Google Scholar] [CrossRef] [PubMed]
- Kress, S.J.P.; Antolinez, F.V.; Richner, P.; Jayanti, S.V.; Kim, D.K.; Prins, F.; Riedinger, A.; Fischer, M.P.C.; Meyer, S.; McPeak, K.M.; et al. Wedge Waveguides and Resonators for Quantum Plasmonics. Nano Lett. 2015, 15, 6267–6275. [Google Scholar] [CrossRef] [PubMed]
- Hossein, K.; Vahed, H. A structure of electro-absorption hybrid plasmonic modulator using silver nano-ribbon. Opt. Quantum Electron. 2023, 55, 894. [Google Scholar]
- Chauhan, D.; Sbeah, Z.; Dwivedi, R.P.; Nunzi, J.-M.; Thakur, M.S. An investigation and analysis of plasmonic modulators: A review. J. Opt. Commun. 2024, 45, 483–511. [Google Scholar] [CrossRef]
- Zurak, L.; Wolf, C.; Meier, J.; Kullock, R.; Mortensen, N.A.; Hecht, B.; Feichtner, T. Modulation of surface response in a single plasmonic nanoresonator. Sci. Adv. 2024, 10, eadn5227. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Gu, Z.; Ma, Q.; Cui, W.Y.; Cui, T.J.; Chan, C.H. Reprogrammable spoof plasmonic modulator. Adv. Funct. Mater. 2023, 33, 2212328. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Wang, B.; Wei, Y.; Zhang, B.; Meng, L.; Liu, T.; Wang, B.; Han, B.; Jiang, Z.; et al. High-performance infrared Ge-based plasmonicphotodetector enhanced by dual absorption mechanism. APL Photonics 2020, 5, 096104. [Google Scholar] [CrossRef]
- Ma, Z.; Kikunaga, K.; Wang, H.; Sun, S.; Amin, R.; Maiti, R.; Tahersima, M.H.; Dalir, H.; Miscuglio, M.; Sorger, V.J. Compact Graphene Plasmonic Slot Photodetector on Silicon-on-Insulator with High Responsivity. ACS Photonics 2020, 7, 932–940. [Google Scholar] [CrossRef]
- Liu, J.; Khayrudinov, V.; Yang, H.; Sun, Y.; Matveev, B.; Remennyi, M.; Yang, K.; Haggren, T.; Lipsanen, H.; Wang, F.; et al. InAs-Nanowire-Based Broadband Ultrafast Optical Switch. J. Phys. Chem. Lett. 2019, 10, 4429–4436. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, Y.; Liu, M.; Zhu, H.; Chen, O.; Zou, S.; Zha, J. Colloidal Assembly of Au–Quantum Dot–Au Sandwiched Nanostructures with Strong Plasmon–Exciton Coupling. J. Phys. Chem. Lett. 2020, 11, 2449–2456. [Google Scholar] [CrossRef]
- Menghrajani, K.S.; Nash, G.R.; Barnes, W.L. Vibrational Strong Coupling with Surface Plasmons and the Presence of Surface Plasmon Stop Bands. ACS Photonics 2019, 6, 2110–2116. [Google Scholar] [CrossRef] [PubMed]
- Min, B.K.; Nguyen, V.-T.; Kim, S.J.; Yi, Y.; Choi, C.-G. Surface Plasmon Resonance-Enhanced Near-Infrared Absorption in Single-Layer MoS2 with Vertically Aligned Nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483. [Google Scholar] [CrossRef] [PubMed]
- Oshita, M.; Takahashi, H.; Ajiki, Y.; Kan, T. Reconfigurable Surface Plasmon Resonance Photodetector with a MEMS Deformable Cantilever. ACS Photonics 2020, 7, 673–679. [Google Scholar] [CrossRef]
- Singh, D.; Malik, H.K. Terahertz emission by multiple resonances under external periodic electrostatic field. Phys. Rev. E 2020, 101, 043207. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Zhou, Y.; Luo, Y.; Li, X.; Bosman, M.; Ang, L.K.; Zhang, P.; Wu, L. Plasmon-Enhanced Resonant Photoemission Using Atomically Thick Dielectric Coatings. ACS Nano 2020, 14, 8806–8815. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.J.; Soroosh, M.; AL-Shammri, F.K.; Alkhayer, A.G.; Mondal, H. Design and simulation of a compact subwavelength graphene-based switch for surface plasmon polariton transmission in integrated optoelectronic circuits. Plasmonics 2024, 1–13. [Google Scholar] [CrossRef]
- Haddadan, F.; Soroosh, M. Design and simulation of a subwavelength 4-to-2 graphene-based plasmonic priority encoder. Opt. Laser Technol. 2023, 157, 108680. [Google Scholar] [CrossRef]
- Saeed, M.; Ghaffar, A.; Rehman, S.U.; Naz, M.Y.; Shukrullah, S.; Naqvi, Q.A. Graphene-based plasmonic waveguides: A mini review. Plasmonics 2022, 17, 901–911. [Google Scholar] [CrossRef]
- Sharma, T.; Zhang, Z.; Wang, J.; Cheng, Z.; Yu, K. Past, present, and future of hybrid plasmonic waveguides for photonics integrated circuits. Nanotechnol. Precis. Eng. 2024, 7, 045001. [Google Scholar] [CrossRef]
- Ding, W.J.; Lim, J.Z.J.; Do, H.T.B.; Xiong, X.; Mahfoud, Z.; Png, C.E.; Bosman, M.; Ang, L.K.; Wu, L. Particle simulation of plasmons. Nanophotonics 2020, 9, 3303–3313. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, M.; Zhang, Y.; Zhang, P.; Liu, W.; Liu, S. Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. J. Opt. 2011, 13, 035003. [Google Scholar] [CrossRef]
- Derouillat, J.; Beck, A.; Pérez, F.; Vinci, T.; Chiaramello, M.; Grassi, A.; Flé, M.; Bouchard, G.; Plotnikov, I.; Aunai, N.; et al. Smilei: A collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 2018, 222, 351–373. [Google Scholar] [CrossRef]
Units of charge(e) | e |
Units of mass(m) | me |
Units of velocity(c) | c |
Units of time(Tr) | ωr−1 |
Units of length(Lr) | c/ωr |
Units of electric field(Er) | mecωr/e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Mao, H.; Yang, S.; Lu, C.; Zhao, X.; Lu, M. A New Method to Enhance the Light–Matter Interaction by Controlling the Resonance of Electrons. Photonics 2025, 12, 95. https://doi.org/10.3390/photonics12020095
Hu X, Mao H, Yang S, Lu C, Zhao X, Lu M. A New Method to Enhance the Light–Matter Interaction by Controlling the Resonance of Electrons. Photonics. 2025; 12(2):95. https://doi.org/10.3390/photonics12020095
Chicago/Turabian StyleHu, Xuefang, Haoyang Mao, Sisi Yang, Changgui Lu, Xiangyue Zhao, and Mengjia Lu. 2025. "A New Method to Enhance the Light–Matter Interaction by Controlling the Resonance of Electrons" Photonics 12, no. 2: 95. https://doi.org/10.3390/photonics12020095
APA StyleHu, X., Mao, H., Yang, S., Lu, C., Zhao, X., & Lu, M. (2025). A New Method to Enhance the Light–Matter Interaction by Controlling the Resonance of Electrons. Photonics, 12(2), 95. https://doi.org/10.3390/photonics12020095