Theoretical Effect of Coma and Spherical Aberrations Translation on Refractive Error and Higher Order Aberrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effect of Spherical Aberration Translation
2.2. Effect of Coma Translation
3. Results
3.1. Effect of Spherical Aberration Translation
3.2. Effect of Coma Translation
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Thibos, L.N.; Applegate, R.A.; Schwiegerling, J.T.; Webb, R.; VSIA Standards Taskforce Members; Vision Science and its Applications. Standards for reporting the optical aberrations of eyes. J. Refract. Surg. 2002, 18, S652–S660. [Google Scholar]
- Jong, T.D.; Sheehan, M.T.; Dubbelman, M.; Koopmans, S.A.; Jansonius, N.M. Shape of the anterior cornea: Comparison of height data from 4 corneal topographers. J. Cataract. Refract. Surg. 2013, 39, 1570–1580. [Google Scholar] [CrossRef] [PubMed]
- Cade, F.; Cruzat, A.; Paschalis, E.I.; Santo, L.E.; Pineda, R. Analysis of Four Aberrometers for Evaluating Lower and Higher Order Aberrations. PLoS ONE 2013, 8, e54990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zernike, V.F. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1934, 1, 689–704. [Google Scholar] [CrossRef]
- Porter, J.; Guirao, A.; Cox, I.G.; Williams, D.R. Monochromatic aberrations of the human eye in a large population. J. Opt. Soc. Am. A 2001, 18, 1793–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castejón-Mochón, J.F.; López-Gil, N.; Benito, A.; Artal, P. Ocular wave-front aberration statistics in a normal young population. Vis. Res. 2002, 42, 1611–1617. [Google Scholar] [CrossRef] [Green Version]
- Cagigal, M.P.; Canales, V.F.; Castejón-Mochón, J.F.; Prieto, P.M.; López-Gil, N.; Artal, P. Statistical description of wave-front aberration in the human eye. Opt. Lett. 2002, 27, 37–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, E.A.; Alcón, E.; Artal, P. Impact of positive coupling of the eye’s trefoil and coma in retinal image quality and visual acuity. J. Opt. Soc. Am. A 2012, 29, 1667–1672. [Google Scholar] [CrossRef]
- Karimian, F.; Feizi, S.; Doozande, A. Higher-Order Aberrations in Myopic Eyes. J. Ophthalmic Vis. Res. 2010, 5, 3–9. [Google Scholar]
- Li, T.; Zhou, X.; Chen, Z.; Zhou, X.; Chu, R.; Hoffman, M.R. Relationship between ocular wavefront aberrations and refractive error in Chinese school children. Clin. Exp. Optom. 2012, 95, 399–403. [Google Scholar] [CrossRef]
- Leung, T.-W.; Lam, A.K.-C.; Kee, C.-S. Ocular Aberrations and Corneal Shape in Adults with and without Astigmatism. Optom. Vis. Sci. 2015, 92, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, S.A.; Verma, S.; McAlinden, C. Centration axis in refractive surgery. Eye Vis. 2015, 2, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, D.H.; Waring, G.O. The subject-fixated coaxially sighted corneal light reflex: A clinical marker for centration of refractive treatments and devices. Am. J. Ophthalmol. 2014, 158, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, S.A.; Ewering, T. New asymmetric centration strategy combining pupil and corneal vertex information for ablation procedures in refractive surgery: Theoretical background. J. Refract. Surg. 2012, 28, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Vinas, M.; De Gracia, P.; Dorronsoro, C.; Sawides, L.; Marin, G.; Hernández, M.; Marcos, S. Astigmatism Impact on Visual Performance. Optom. Vis. Sci. 2013, 90, 1430–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legras, R.; Benard, Y. Measurement and prediction of subjective gradations of images in presence of monochromatic aberrations. Vis. Res. 2013, 86, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Yeu, E.; Wang, L.; Koch, D.D. The Effect of Corneal Wavefront Aberrations on Corneal Pseudoaccommodation. Am. J. Ophthalmol. 2012, 153, 972–981.e2. [Google Scholar] [CrossRef]
- Feizi, S.; Karimian, F. Effect of higher order aberrations on contrast sensitivity function in myopic eyes. Jpn. J. Ophthalmol. 2009, 53, 414–419. [Google Scholar] [CrossRef]
- Cheng, X.; Bradley, A.; Ravikumar, S.; Thibos, L.N. Visual Impact of Zernike and Seidel Forms of Monochromatic Aberrations. Optom. Vis. Sci. 2010, 87, 300–312. [Google Scholar] [CrossRef] [Green Version]
- Lundström, L.; Unsbo, P. Transformation of Zernike coefficients: Scaled, translated, and rotated wavefronts with circular and elliptical pupils. J. Opt. Soc. Am. A 2007, 24, 569–577. [Google Scholar] [CrossRef]
- Kamiya, K.; Umeda, K.; Igarashi, A.; Ando, W.; Shimizu, K. Factors Influencing the Changes in Coma-like Aberrations after Myopic Laser in Situ Keratomileusis. Curr. Eye Res. 2011, 36, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Mrochen, M.; Viswanathan, D.; Basuthkar, S. Wavefront aberrations in eyes with decentered ablations. J. Cataract. Refract. Surg. 2009, 35, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Alio, J.L.; El Aswad, A.; Vega-Estrada, A.; Javaloy, J. Laser in situ keratomileusis for high hyperopia (>5.0 diopters) using optimized aspheric profiles: Efficacy and safety. J. Cataract. Refract. Surg. 2013, 39, 519–527. [Google Scholar] [CrossRef]
- Subbaram, M.V.; MacRae, S.M. Does dilated wavefront aberration measurement provide better postoperative outcome after custom LASIK? Ophthalmology 2006, 113, 1813–1817. [Google Scholar] [CrossRef]
- Porter, J.; Yoon, G.; Lozano, D.; Wolfing, J.; Tumbar, R.; Macrae, S.; Cox, I.G.; Williams, D.R. Aberrations induced in wavefront-guided laser refractive surgery due to shifts between natural and dilated pupil center locations. J. Cataract. Refract. Surg. 2006, 32, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Bühren, J.; Yoon, G.; Kenner, S.; Macrae, S.; Huxlin, K. The Effect of Optical Zone Decentration on Lower- and Higher-Order Aberrations after Photorefractive Keratectomy in a Cat Model. Investig. Opthalmol. Vis. Sci. 2007, 48, 5806–5814. [Google Scholar] [CrossRef] [Green Version]
- Miháltz, K.; Kránitz, K.; Kovács, I.; Takacs, A.; Nemeth, J.; Nagy, Z.Z. Shifting of the Line of Sight in Keratoconus Measured by a Hartmann-Shack Sensor. Ophthalmology 2010, 117, 41–48. [Google Scholar] [CrossRef]
- Atchison, D.A.; Mathur, A.; Read, S.A.; Walker, M.I.; Newman, A.R.; Tanos, P.P.; McLennan, R.T.; Tran, A.H. Peripheral Ocular Aberrations in Mild and Moderate Keratoconus. Investig. Opthalmol. Vis. Sci. 2010, 51, 6850–6857. [Google Scholar] [CrossRef] [Green Version]
- Pantanelli, S.; Macrae, S.; Jeong, T.M.; Yoon, G. Characterizing the Wave Aberration in Eyes with Keratoconus or Penetrating Keratoplasty Using a High–Dynamic Range Wavefront Sensor. Ophthalmology 2007, 114, 2013–2021. [Google Scholar] [CrossRef]
- McCormick, G.J.; Porter, J.; Cox, I.G.; Macrae, S. Higher-Order Aberrations in Eyes with Irregular Corneas after Laser Refractive Surgery. Ophthalmology 2005, 112, 1699–1709. [Google Scholar] [CrossRef]
- Smolek, M.K. Method for Expressing Clinical and Statistical Significance of Ocular and Corneal Wave Front Error Aberrations. Cornea 2012, 31, 212–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundström, L.; Gustafsson, J.; Unsbo, P. Population distribution of wavefront aberrations in the peripheral human eye. J. Opt. Soc. Am. A 2009, 26, 2192–2198. [Google Scholar] [CrossRef] [PubMed]
- Atchison, D.A.; Scott, D.H. Monochromatic aberrations of human eyes in the horizontal visual field. J. Opt. Soc. Am. A 2002, 19, 2180–2184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Gil, N.; Howland, H.C.; Howland, B.; Charman, N.; Applegate, R. Generation of third-order spherical and coma aberration using radially simmetric fourth-order lenses. J. Opt. Soc. Am. A 1998, 15, 2563–2571. [Google Scholar] [CrossRef] [Green Version]
- Bonaque, S.; Fernandez-Sanchez, V.; Montés-Micó, R.; López-Gil, N. In Vitro quality of aspheric IOLs under translation and tilts. In Proceedings of the Wavefront Congress 2009, Alicante, Spain, 5–7 March 2009. [Google Scholar]
- Bonaque-González, S.; Bernal-Molina, P.; López-Gil, N. Amount of aspheric intraocular lens decentration that maintains the intraocular lens’ optical advantages. J. Cataract. Refract. Surg. 2015, 41, 1110–1111. [Google Scholar] [CrossRef]
- Wang, L.; Koch, D.D. Effect of Decentration of Wavefront-Corrected Intraocular Lenses on the Higher-Order Aberrations of the Eye. Arch. Ophthalmol. 2005, 123, 1226. [Google Scholar] [CrossRef] [Green Version]
- Applegate, R.A.; Sarver, E.J.; Khemsara, V. Are all aberrations equal? J. Refract. Surg. 2002, 18, S556–S562. [Google Scholar] [CrossRef]
- López-Gil, N. The effects of spherical aberration and coma on spatial vision. In Proceedings of the PhO’99, EOS Topical Meeting on Physiological Optics, Wroclaw, Poland, 23–25 September 1999. [Google Scholar]
- López-Gil, N.; Castejón-Mochón, J.F.; Fernández-Sánchez, V. Limitations of the ocular wavefront correction with contact lenses. Vis. Res. 2009, 49, 1729–1737. [Google Scholar] [CrossRef] [Green Version]
- Ashena, Z.; Maqsood, S.; Ahmed, S.N.; Nanavaty, M.A. Effect of Intraocular Lens Tilt and Decentration on Visual Acuity, Dysphotopsia and Wavefront Aberrations. Vison 2020, 4, 41. [Google Scholar] [CrossRef]
- Ruiz-Alcocer, J.; Pérez-Vives, C.; Madrid-Costa, D.; López-Gil, N.; Montés-Micó, R. Effect of Simulated IOL Tilt and Decentration on Spherical Aberration After Hyperopic LASIK for Different Intraocular Lenses. J. Refract. Surg. 2012, 28, 327–335. [Google Scholar] [CrossRef]
- Pérez-Merino, P.; Marcos, S. Effect of intraocular lens decentration on image quality tested in a custom model eye. J. Cataract. Refract. Surg. 2018, 44, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Bonaque-González, S.; Bernal-Molina, P.; Marcos-Robles, M.; López-Gil, N. Optical Characterization Method for Tilted or Decentered Intraocular Lenses. Optom. Vis. Sci. 2016, 93, 705–713. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arba-Mosquera, S.; Verma, S.; Awwad, S.T. Theoretical Effect of Coma and Spherical Aberrations Translation on Refractive Error and Higher Order Aberrations. Photonics 2020, 7, 116. https://doi.org/10.3390/photonics7040116
Arba-Mosquera S, Verma S, Awwad ST. Theoretical Effect of Coma and Spherical Aberrations Translation on Refractive Error and Higher Order Aberrations. Photonics. 2020; 7(4):116. https://doi.org/10.3390/photonics7040116
Chicago/Turabian StyleArba-Mosquera, Samuel, Shwetabh Verma, and Shady T. Awwad. 2020. "Theoretical Effect of Coma and Spherical Aberrations Translation on Refractive Error and Higher Order Aberrations" Photonics 7, no. 4: 116. https://doi.org/10.3390/photonics7040116
APA StyleArba-Mosquera, S., Verma, S., & Awwad, S. T. (2020). Theoretical Effect of Coma and Spherical Aberrations Translation on Refractive Error and Higher Order Aberrations. Photonics, 7(4), 116. https://doi.org/10.3390/photonics7040116