Generation of Switchable Chirp Waveforms in the Photonic Domain with Immunity to Dispersion-Induced Power Fading
Abstract
:1. Introduction
2. Operation Principle and Theoretical Analysis
3. Experimental Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richards, M.A.; Scheer, J.; Holm, W.A.; Melvin, W.L. Principles of Modern Radar; Scitech Publising, Inc.: Realeigh, NC, USA, 2010. [Google Scholar]
- Skolnik, M. Role of radar in microwaves. IEEE Trans. Microw. Theory 2002, 50, 625–632. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Pan, S. Broadband cognitive radio enabled by photonics. J. Lightwave Technol. 2020, 38, 3076–3088. [Google Scholar] [CrossRef]
- Chi, H.; Wang, C.; Yao, J. Photonic generation of wideband chirped microwave waveforms. IEEE J. Microw. 2021, 1, 787–803. [Google Scholar] [CrossRef]
- Zeitouny, A.; Stepanov, S.; Levinson, O.; Horowitz, M. Optical generation of linearly chirped microwave pulses using fiber Bragg gratings. IEEE Photonic. Technol. Lett. 2005, 17, 660–662. [Google Scholar] [CrossRef]
- Wang, C.; Yao, J. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photonic. Technol. Lett. 2008, 20, 882–884. [Google Scholar] [CrossRef]
- Chi, C.; Yao, J. Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating. J. Lightwave Technol. 2008, 26, 1282–1287. [Google Scholar] [CrossRef]
- Wang, C.; Yao, J. Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating. J. Lightwave Technol. 2010, 28, 1652–1660. [Google Scholar] [CrossRef]
- Herrera, L.E.Y.; Ribeiro, R.M.; Jabulka, V.B.; Tovar, P.; von der Weid, J.P. Photonic generation and transmission of linearly chirped microwave pulses with high TBWP by self-heterodyne technique. J. Lightwave Technol. 2018, 36, 4408–4415. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, X.; Guo, Q.; Zhang, F.; Pan, S. Photonic generation of linear-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation. J. Lightwave Technol. 2017, 35, 1821–1829. [Google Scholar] [CrossRef]
- Kanno, A.; Kawanishi, T. Broadband frequency-modulated continuous-wave signal generation by optical modulation technique. J. Lightwave Technol. 2014, 32, 3566–3572. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, F.; Pan, S. Generation of linear frequency-modulated waveforms by a frequency-sweeping optoelectronic oscillator. J. Lightwave Technol. 2018, 36, 3927–3934. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Jia, S.; Yu, X.; Jin, X.; Zheng, S.; Chi, H.; Zhang, X. Experimental generation of linearly chirped 350 GHz band pulses with a bandwidth beyond 60 GHz. Opt. Lett. 2017, 42, 5242–5245. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liang, J.; Li, X.; Xiao, N.; Zhang, Z.; Yuan, X. Theoretical investigation of photonic generation of frequency quadrupling linearly chirped waveform with large tunable range. Opt. Express 2017, 25, 16196–16203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Yao, J. Dual-chirp microwave waveform generation using a dual-parallel Mach-Zehnder modulator. IEEE Photonic. Technol. Lett. 2015, 27, 1410–1413. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Jin, T.; Chi, H.; Zheng, S.; Jin, X.; Zhang, X. Photonic generation of dual-chirp waveforms with improved time-bandwidth product. IEEE Photonic. Technol. Lett. 2017, 29, 1253–1256. [Google Scholar] [CrossRef]
- Li, X.; Zhao, S.; Zhu, Z.; Qu, K.; Lin, T.; Hu, D. Photonic generation of frequency and bandwidth multiplying dual-chirp microwave waveform. IEEE Photonics J. 2017, 9, 1–14. [Google Scholar] [CrossRef]
- Li, P.; Yan, L.; Ye, J.; Zou, X.; Luo, B.; Pan, W. Photonic approach for the generation of switchable down-, up-, and dual-chirped linear frequency-modulated microwave signals. Opt. Lett. 2020, 45, 1990–1993. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Yang, S.; Yang, B.; Jin, T.; Chi, H. Photonic approach for generating bandwidth-doubled and switchable multi-format chirp waveforms. Opt. Lett. 2021, 46, 1578–1581. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, A.; Maresca, S.; Scotti, F.; Ghelfi, P.; Serafino, G.; Bogoni, A. Coherent dual-band radar-over-fiber network with VCSEL-based signal distribution. J. Lightwave Technol. 2020, 38, 6257–6264. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Ou, J.; Chi, H. Generation of Switchable Chirp Waveforms in the Photonic Domain with Immunity to Dispersion-Induced Power Fading. Photonics 2021, 8, 501. https://doi.org/10.3390/photonics8110501
Huang C, Ou J, Chi H. Generation of Switchable Chirp Waveforms in the Photonic Domain with Immunity to Dispersion-Induced Power Fading. Photonics. 2021; 8(11):501. https://doi.org/10.3390/photonics8110501
Chicago/Turabian StyleHuang, Chaoqun, Jun Ou, and Hao Chi. 2021. "Generation of Switchable Chirp Waveforms in the Photonic Domain with Immunity to Dispersion-Induced Power Fading" Photonics 8, no. 11: 501. https://doi.org/10.3390/photonics8110501
APA StyleHuang, C., Ou, J., & Chi, H. (2021). Generation of Switchable Chirp Waveforms in the Photonic Domain with Immunity to Dispersion-Induced Power Fading. Photonics, 8(11), 501. https://doi.org/10.3390/photonics8110501