Joint Estimation of Symbol Rate and Chromatic Dispersion Using Delayed Multiplier for Optical Performance Monitoring
Abstract
:1. Introduction
2. Operation Principles
2.1. Problem Formulation
2.2. Spectral Line Generation with Delayed Input
2.3. Enhancing Results with the Whitening Filter
2.4. Robustness to Other Transmission Impairments
3. Simulation Results
3.1. Simulation Setups and Analysis Method
3.2. Simulation Results
4. Experimental Results
5. Discussion
5.1. Computation Complexity Comparison
5.2. Relationship to Other Methods Employ Cyclostationary Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, Z.; Khan, F.N.; Sui, Q.; Zhong, K.; Lu, C.; Lau, A.P.T. Optical Performance Monitoring: A Review of Current and Future Technologies. J. Light. Technol. 2016, 34, 525–543. [Google Scholar] [CrossRef]
- Layec, P.; Morea, A.; Vacondio, F.; Rival, O.; Antona, J.-C. Elastic optical networks: The global evolution to software configurable optical networks. Bell Labs Tech. J. 2013, 18, 133–151. [Google Scholar] [CrossRef]
- Morea, A.; Rival, O.; Brochier, N.; Le Rouzic, E. Datarate adaptation for night-time energy savings in core networks. J. Light. Technol. 2013, 31, 779–785. [Google Scholar] [CrossRef]
- Nag, A.; Tornatore, M.; Mukherjee, B. Optical network design with mixed line rates and multiple modulation formats. Opt. InfoBase Conf. Pap. 2009, 28, 466–475. [Google Scholar] [CrossRef]
- Yadlowsky, M.J.; Deliso, E.M.; Silva, V.L.D.A. Optical fibers and amplifiers for WDM systems. Proc. IEEE 1997, 85, 1765–1779. [Google Scholar] [CrossRef]
- Savory, S.J. Digital filters for coherent optical receivers. Opt. Express 2008, 16, 804. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Tamura, Y.; Haruna, T.; Yamamoto, Y.; Hirano, M. Ultra low-loss pure silica core fiber. In Proceedings of the 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 11–15 March 2018; pp. 50–55. [Google Scholar]
- Amari, A.; Dobre, O.A.; Venkatesan, R.; Kumar, O.S.S.; Ciblat, P.; Jaouen, Y. A Survey on Fiber Nonlinearity Compensation for 400 Gb/s and beyond Optical Communication Systems. IEEE Commun. Surv. Tutor. 2017, 19, 3097–3113. [Google Scholar] [CrossRef]
- Yonenaga, K.; Takachio, N. A Fiber Chromatic Dispersion Compensation Technique With An Optical Ssb Transmission In Optical Homodyne Detection Systems. IEEE Photonics Technol. Lett. 1993, 5, 949–951. [Google Scholar] [CrossRef]
- Zhang, L.; Zuo, T.; Mao, Y.; Zhang, Q.; Zhou, E.; Liu, G.N.; Xu, X. Beyond 100-Gb/s Transmission over 80-km SMF Using Direct-Detection SSB-DMT at C-Band. J. Light. Technol. 2016, 34, 723–729. [Google Scholar] [CrossRef]
- Soriano, R.A.; Hauske, F.N.; Gonzalez, N.G.; Zhang, Z.; Ye, Y.; Monroy, I.T. Chromatic Dispersion Estimation in Digital Coherent Receivers. J. Light. Technol. 2011, 29, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Xie, C. Chromatic dispersion estimation for single-carrier coherent optical communications. IEEE Photonics Technol. Lett. 2013, 25, 992–995. [Google Scholar] [CrossRef]
- Malouin, C.; Thomas, P.; Zhang, B.; O’Neil, J.; Schmidt, T. Natural Expression of the Best-Match Search Godard Clock-Tone Algorithm for Blind Chromatic Dispersion Estimation in Digital Coherent Receivers. Adv. Photonics Congr. 2012, 2, SpTh2B.4. [Google Scholar] [CrossRef]
- Zhou, H.; Li, B.; Tang, M.; Zhong, K.; Feng, Z.; Cheng, J.; Lau, A.P.T.; Lu, C.; Fu, S.; Shum, P.P.; et al. Fractional Fourier Transformation-Based Blind Chromatic Dispersion Estimation for Coherent Optical Communications. J. Light. Technol. 2016, 34, 2371–2380. [Google Scholar] [CrossRef]
- Borkowski, R.; Zhang, X.; Zibar, D.; Younce, R.; Monroy, I.T. Experimental demonstration of adaptive digital monitoring and compensation of chromatic dispersion for coherent DP-QPSK receiver. Opt. Express 2011, 19, B728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ip, E.; Kahn, J.M. Digital equalization of chromatic dispersion and polarization mode dispersion. J. Light. Technol. 2007, 25, 2033–2043. [Google Scholar] [CrossRef]
- Sui, Q.; Lau, A.P.T.; Lu, C. Fast and robust blind chromatic dispersion estimation using auto-correlation of signal power waveform for digital coherent systems. J. Light. Technol. 2013, 31, 306–312. [Google Scholar] [CrossRef]
- Chen, Y.; Sui, Q.; Li, Z.; Liang, Z.; Liu, W. Joint CD and PMD monitoring based on a pair of low-bandwidth coherent receivers. Opt. Express 2016, 24, 26756. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Eriksson, T.A.; Fu, S.; Johannisson, P.; Karlsson, M.; Andrekson, P.A.; Ming, T.; Liu, D. Fast and robust chromatic dispersion estimation based on temporal auto-correlation after digital spectrum superposition. Opt. Express 2015, 23, 15418. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M.; Sato, M.; Thomsen, B. Cyclostationarity-based joint monitoring of symbol-rate, frequency offset, CD and OSNR for Nyquist WDM superchannels. Opt. Express 2015, 23, 25762. [Google Scholar] [CrossRef]
- Isautier, P.; Mehta, K.; Stark, A.J.; Ralph, S.E. Robust Architecture for Autonomous Coherent Optical Receivers. J. Opt. Commun. Netw. 2015, 7, 864. [Google Scholar] [CrossRef]
- Tang, D.; Wang, X.; Zhuang, L.; Guo, P.; Yang, A.; Qiao, Y. Delay-Tap-Sampling-Based Chromatic Dispersion Estimation Method with Ultra-Low Sampling Rate for Optical Fiber Communication Systems. IEEE Access 2020, 8, 101004–101013. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Zhang, M. Low-Complexity Adaptive Chromatic Dispersion Estimation Scheme Using Machine Learning for Coherent Long-Reach Passive Optical Networks. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics. In Nonlinear Science at the Dawn of the 21st Century; Springer: Berlin/Heidelberg, Germany, 2020; pp. 195–211. ISBN 0120451433. [Google Scholar]
- Spooner, C.M.; Gardner, W.A. Robust feature detection for signal interception. IEEE Trans. Commun. 1994, 42, 2165–2173. [Google Scholar] [CrossRef]
- Hauske, F.N.; Stojanovic, N.; Xie, C.; Chen, M. Impact of optical channel distortions to digital timing recovery in digital coherent transmission systems. In Proceedings of the 2010 12th International Conference on Transparent Optical Networks, Munich, Germany, 27 June–1 July 2010; pp. 2–5. [Google Scholar] [CrossRef]
- Plancherel, M.; Leffler, M. Contribution à l’étude de la représentation d’une fonction arbitraire par des intégrales définies. Rend. Circ. Mat. Palermo 1910, 30, 289–335. [Google Scholar] [CrossRef]
- Cooke, J.C. Note on the Principle of Stationary Phase. IMA J. Appl. Math. 1978, 22, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Gardner, W.A. The spectral correlation theory of cyclostationary time-series. Signal Process. 1986, 11, 405. [Google Scholar] [CrossRef]
- Friedlander, B.; Porat, B. The Modified Yule-Walker Method of ARMA Spectral Estimation. IEEE Trans. Aerosp. Electron. Syst. 1984, AES-20, 158–173. [Google Scholar] [CrossRef]
- Gardner, W.A.; Spooner, C.M. Signal interception: Performance advantages of cyclic-feature detectors. IEEE Trans. Commun. 1992, 40, 149–159. [Google Scholar] [CrossRef]
- Serena, P.; Bononi, A. A time-domain extended gaussian noise model. J. Light. Technol. 2015, 33, 1459–1472. [Google Scholar] [CrossRef]
- Ciblat, P.; Ghogho, M. Blind NLLS carrier frequency-offset estimation for QAM, PSK, and PAM modulations: Performance at low SNR. IEEE Trans. Commun. 2006, 54, 1725–1730. [Google Scholar] [CrossRef] [Green Version]
- Ciblat, P.; Loubaton, P.; Serpedin, E.; Giannakis, G.B. Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators. IEEE Trans. Inf. Theory 2002, 48, 1922–1934. [Google Scholar] [CrossRef]
- Suesser-Rechberger, B.; Gappmair, W. New Results on Symbol Rate Estimation in Digital Satellite Receivers. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018. [Google Scholar] [CrossRef]
- Suesser-Rechberger, B.; Gappmair, W. Asymptotic CRLB for Blind Symbol Rate Estimation in Digital Satellite Receivers. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–6. [Google Scholar]
- Schmogrow, R.; Meyer, M.; Schindler, P.C.; Nebendahl, B.; Dreschmann, M.; Meyer, J.; Josten, A.; Hillerkuss, D.; Ben-Ezra, S.; Becker, J.; et al. Real-time Nyquist signaling with dynamic precision and flexible non-integer oversampling. Opt. Express 2014, 22, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
β | Success Rate % | RMSE (ps/nm) | ||
---|---|---|---|---|
With Filter | w/o Filter | With Filter | w/o Filter | |
0.06 | 37.30 | 1.29 | 385.20 | 655.16 |
0.1 | 91.55 | 30.60 | 287.27 | 162.28 |
0.2 | 94.95 | 88.85 | 127.30 | 88.90 |
Delay-and-Multiply | PAPR Best-Match | Squarer Best-Match | ACSPW | |
---|---|---|---|---|
RMSE (ps/nm) | 105.7 | 462.8 | 207.5 | 471.5 |
Success Rate % | 100 | 98.3 | 100 | 100 |
Method | Scanning Size (M) | FFT Size(N) | Additional Filtering Length | ||
---|---|---|---|---|---|
NRZ | SRRC | NRZ | SRRC | ||
Delay-and-Multiply | 164 | 4096 | 25,000 | - | 32 |
Squarer best-match | 350 | 6144 | 30,000 | 348 | 348 |
ACSPW | 2 | 16,384 | 30,000 | - | 64 |
Ionescu and Isautier [20] | 0.3 × 106 | 524,288 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ba, J.; Huang, Z.; Shen, F.; Wei, J. Joint Estimation of Symbol Rate and Chromatic Dispersion Using Delayed Multiplier for Optical Performance Monitoring. Photonics 2021, 8, 58. https://doi.org/10.3390/photonics8020058
Ba J, Huang Z, Shen F, Wei J. Joint Estimation of Symbol Rate and Chromatic Dispersion Using Delayed Multiplier for Optical Performance Monitoring. Photonics. 2021; 8(2):58. https://doi.org/10.3390/photonics8020058
Chicago/Turabian StyleBa, Junhao, Zhiping Huang, Fangqi Shen, and Junyu Wei. 2021. "Joint Estimation of Symbol Rate and Chromatic Dispersion Using Delayed Multiplier for Optical Performance Monitoring" Photonics 8, no. 2: 58. https://doi.org/10.3390/photonics8020058
APA StyleBa, J., Huang, Z., Shen, F., & Wei, J. (2021). Joint Estimation of Symbol Rate and Chromatic Dispersion Using Delayed Multiplier for Optical Performance Monitoring. Photonics, 8(2), 58. https://doi.org/10.3390/photonics8020058