Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers’ Stability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Buildup of PEI/GO LbL Films
3.2. GO Adsorption Kinetics
3.3. GO Desorption Kinetics
3.4. Thermostimulated Desorption of GO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Culshaw, B.; Kersey, A. Fiber-optic sensing: A historical perspective. J. Light. Technol. 2008, 26, 1064–1078. [Google Scholar] [CrossRef]
- Bogue, R. Fibre optic sensors: A review of today’s applications. Sens. Rev. 2011, 31, 304–309. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Diaz, C.A.R.; Avellar, L.M.; Pontes, M.J.; Marques, C.; Frizera, A. Polymer Optical Fiber Sensors in Healthcare Applications: A Comprehensive Review. Sensors 2019, 19, 3156. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Deen, M.J. Fiber Optic Communications: Fundamentals and Applications, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-0-470-51867-0. [Google Scholar] [CrossRef]
- Chen, Z.; Lau, D.; Teo, J.T.; Ng, S.H.; Yang, X.; Kei, P.L. Simultaneous measurement of breathing rate and heart rate using a microbend multimode fiber optic sensor. J. Biomed. Opt. 2014, 19, 057001. [Google Scholar] [CrossRef]
- Rajan, G.; Iniewski, K. (Eds.) Optical Fiber Sensors: Advanced Techniques and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar] [CrossRef]
- Krohn, D.; MacDougall, T.; Mendez, A. Fiber Optic Sensors: Fundamentals and Applications, 4th ed.; SPIE: Bellingham, WA, USA; Washington, DC, USA, 2014. [Google Scholar]
- Ulieru, D.G. Application of fiber optic sensors to wastewater management using microelectronics fabrication processes. Proc. SPIE 3105. Chem. Biochem. Environ. Fiber Sens. IX 1997, 3105, 229–239. [Google Scholar] [CrossRef]
- Michel, K.; Bureau, B.; Boussard-Plédel, C.; Jouan, T.; Adam, J.L.; Staubmann, K.; Baumann, T. Monitoring of pollutant in wastewater by infrared spectroscopy using chalcogenide glass optical fibers. Sens. Actuators B Chem. 2004, 101, 252–259. [Google Scholar] [CrossRef]
- Chong, S.S.; Aziz, A.R.; Harun, S.W. Fibre optic sensors for selected wastewater characteristics. Sensors 2013, 13, 8640–8668. [Google Scholar] [CrossRef] [Green Version]
- Raposo, M.; Oliveira, O.N., Jr. Energies of Adsorption of Poly(o-methoxyaniline) Layer-by-Layer Films. Langmuir 2000, 16, 2839–2844. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Xu, M.G.; Dakin, J.P. Novel hollow-glass microsphere sensor for monitoring high hydrostatic pressure. Proc. SPIE Fiber Opt. Laser Sens. X 1993, 1795, 2–7. [Google Scholar] [CrossRef]
- Novais, S.; Ferreira, M.S.; Pinto, J.L. Lateral Load Sensing with an Optical Fiber Inline Microcavity. IEEE Photonics Technol. Lett. 2017, 29, 1502–1505. [Google Scholar] [CrossRef]
- Liu, S.; Yang, K.; Wang, Y.; Qu, J.; Liao, C.; He, J.; Li, Z.; Yin, G.; Sun, B.; Zhou, J. High-sensitivity strain sensor based on in-fiber rectangular air bubble. Sci. Rep. 2015, 5, 7624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.; Silva, S.; Frazão, O. Hollow Microsphere Fabry–Perot Cavity for Sensing Applications. IEEE Photonics Technol. Lett. 2017, 29, 1229–1232. [Google Scholar] [CrossRef] [Green Version]
- Dimiev, A.M.; Eigler, S. Graphene Oxide; John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar] [CrossRef]
- Yang, Y.H.; Bolling, L.; Priolo, M.A.; Grunlan, J.C. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 2013, 25, 503–508. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Azman, N.H.N.; Nazir, M.S.M.M.; Ngee, L.H.; Sulaiman, Y. Graphene-based ternary composites for supercapacitors. Int. J. Energy Res. 2018, 42, 2104–2116. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, L.; Li, F. Graphene Oxide: Physics and Applications; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Yang, S.L.; Sha, S.M.; Lu, H.; Wu, J.D.; Ma, J.F.; Wang, D.W.; Hou, C.P.; Sheng, Z.L. Graphene oxide and reduced graphene oxide coated cotton fabrics with opposite wettability for continuous oil/water separation. Sep. Purif. Technol. 2021, 259, 118095. [Google Scholar] [CrossRef]
- Qu, Y.F.; Ding, J.J.; Fu, H.W.; Chen, H.X.; Peng, J.H. Investigation on tunable electronic properties of semiconducting graphene induced by boron and sulfur doping. Appl. Surf. Sci. 2021, 542, 148763. [Google Scholar] [CrossRef]
- Cui, X.H.; Luo, Y.N.; Zhou, Y.; Dong, W.H.; Chen, W. Application of functionalized graphene in Li-O-2 batteries. Nanotechnology 2021, 32, 132003. [Google Scholar] [CrossRef]
- Tian, Y.H.; Yu, Z.C.; Cao, L.Y.; Zhang, X.L.; Sun, C.H.; Wang, D.W. Graphene oxide: An emerging electromaterial for energy storage and conversion. J. Energy Chem. 2021, 55, 323–344. [Google Scholar] [CrossRef]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Pasadas, F.; Jiménez, D. Sensitivity analysis of a Graphene Field-Effect Transistors by means of Design of Experiments. Math. Comput. Simul. 2021, 183, 187–197. [Google Scholar] [CrossRef]
- Shende, P.; Pathan, N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr. Polym. 2021, 255, 117385. [Google Scholar] [CrossRef]
- Shahi, M.; Hekmat, F.; Shahrokhian, S. Hybrid supercapacitors constructed from dou-ble-shelled cobalt-zinc sulfide/copper oxide nanoarrays and ferrous sulfide/graphene oxide nanostructures. J. Colloid Interface Sci. 2021, 585, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Sokolov, A.; Ko, M.J.; Choi, C. Optically excited threshold switching synapse characteristics on nitrogen-doped graphene oxide quantum dots (N-GOQDs). J. Alloy. Compd. 2021, 855, 157514. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, M.Y.; Qiang, Z.; Song, J.C.; Wang, Y.; Fan, Y.C.; You, Z.W.; Liao, Y.Z.; Zhu, M.F.; Ye, C.H. Multi-functional and highly conductive textiles with ultra-high durability through ‘green’ fabrication process. Chem. Eng. J. 2021, 406, 127140. [Google Scholar] [CrossRef]
- Arul, C.; Moulaee, K.; Donato, N.; Iannazzo, D.; Lavanya, N.; Neri, G.; Sekar, C. Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sens. Actuators B Chem. 2021, 329, 129053. [Google Scholar] [CrossRef]
- Qian, L.T.; Durairaj, S.; Prins, S.; Chen, A.C. Nano-material-based electrochemical sensors and biosensors for the detection of pharmaceu-tical compounds. Biosens. Bioelectron. 2021, 175, 112836. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Singh, R.; Kumar, A.; Kashyap, R.; Kumar, D.; Kumar, M. Chemically functionalized graphene oxide thin films for selective ammonia Gas sensing. Mater. Res. Express 2020, 7, 15612. [Google Scholar] [CrossRef]
- Bettazzi, F.; Ingrosso, C.; Sfragano, P.S.; Pifferi, V.; Falciola, L.; Curri, M.L.; Palchetti, I. Gold nanoparticles modified graphene platforms for highly sensitive electrochemical detection of vitamin C in infant food and formulae. Food Chem. 2020, 344, 128692. [Google Scholar] [CrossRef]
- Gross, M.A.; Moreira, S.G.C.; Pereira-da-Silva, M.A.; Sodre, F.F.; Paterno, L.G. Multilayered iron oxide/reduced graphene oxide nano-composite electrode for voltammetric sensing of bisphenol-A in lake water and ther-mal paper samples. Sci. Total Environ. 2021, 763, 142985. [Google Scholar] [CrossRef]
- Hue, N.T.; Wu, Q.; Liu, W.H.; Bu, X.R.; Wu, H.Y.; Wang, C.; Li, X.; Wang, X.L. Graphene oxide/graphene hybrid film with ultrahigh am-monia sensing performance. Nanotechnology 2021, 32, 115501. [Google Scholar] [CrossRef] [PubMed]
- Politano, G.G.; Vena, C.; Desiderio, G.; Versace, C. Variable Angle Spectroscopic Ellipsometry Characterization of Reduced Graphene Oxide Stabilized with Poly(Sodium 4-Styrenesulfonate). Coatings 2020, 10, 743. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Raposo, M.; Ribeiro, P.A.; Silva, S.O.; Frazão, O. Tuning of Fiber Optic Surface Reflectivity through Graphene Oxide-Based Layer-by-Layer Film Coatings. Photonics 2020, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Marques, I.; Magalhães-Mota, G.; Pires, F.; Sério, S.; Ribeiro, P.A.; Raposo, M. Detection of Traces of Triclosan in Water. Appl. Surf. Sci. 2017, 421, 142–147. [Google Scholar] [CrossRef]
- Monteiro, C.S.; Raposo, M.; Ribeiro, P.A.; Silva, S.; Frazão, O. Graphene oxide as a tunable platform for microsphere-based optical fiber sensors. In Proceedings of the SPIE 11207, Fourth International Conference on Applications of Optics and Photonics, Lisbon, Portugal, 31 May–4 June 2019; Volume 112070X. [Google Scholar] [CrossRef]
- Magro, C.; Zagalo, P.; Pereira-da-Silva, J.; Pires Mateus, E.; Branco Ribeiro, A.; Ribeiro, P.; Raposo, M. Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. Nanomaterials 2020, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Xavier, C.; Zagalo, P.; Ribeiro, P.; Raposo, M. Optimization of Graphene Oxide Layer-by-Layer Films to Be Used as an Enhancer Coating of Optical Fibers Sensors. In Proceedings of the 8th International Conference on Photonics, Optics and Laser Technology—Volume 1: PHOTOPTICS, Valletta, Malta, 27–29 February 2020; pp. 192–195, ISBN 978-989-758-401-5. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C.; Morrill, T.C. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Raposo, M.; Pontes, R.S.; Mattoso, L.H.C.; Oliveira, O.N., Jr. Kinetics of Adsorption of Poly (o-methoxyaniline) Self-assembled films. Macromolecules 1997, 30, 6095–6101. [Google Scholar] [CrossRef]
- Raposo, M.; Oliveira, O.N., Jr. Adsorption of poly(o-methoxyaniline) in layer-by-layer films. Langmuir 2002, 18, 6866–6874. [Google Scholar] [CrossRef]
- Zhou, Y.; Bao, Q.; Tang, L.A.L.; Zhong, Y.; Loh, K.P. Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. Mater. 2009, 21, 2950–2956. [Google Scholar] [CrossRef]
- Liu, H.; Kuila, T.; Kim, N.H.; Ku, B.-C.; Lee, J.H. In situ synthesis of the reduced graphene oxide–polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 2013, 1, 3739–3746. [Google Scholar] [CrossRef]
- Kim, S.; Zhou, S.; Hu, Y.; Acik, M.; Chabal, Y.J.; Berger, C.; de Heer, W.; Bongiorno, A.; Riedo, E. Room-temperature metastability of multilayer graphene oxide films. Nat. Mater. 2012, 11, 544–549. [Google Scholar] [CrossRef] [PubMed]
Equation (1) Parameters | Calculated Values |
---|---|
(a.u.) | 0.022 ± 0.003 |
(s) | 7 ± 3 |
(a.u.) | 0.13 ± 0.02 |
600 ± 30 1 | |
nJMA | 1 |
R | 0.992 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, M.; Xavier, C.; Monteiro, C.; Silva, S.; Frazão, O.; Zagalo, P.; Ribeiro, P.A. Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers’ Stability. Photonics 2021, 8, 70. https://doi.org/10.3390/photonics8030070
Raposo M, Xavier C, Monteiro C, Silva S, Frazão O, Zagalo P, Ribeiro PA. Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers’ Stability. Photonics. 2021; 8(3):70. https://doi.org/10.3390/photonics8030070
Chicago/Turabian StyleRaposo, Maria, Carlota Xavier, Catarina Monteiro, Susana Silva, Orlando Frazão, Paulo Zagalo, and Paulo António Ribeiro. 2021. "Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers’ Stability" Photonics 8, no. 3: 70. https://doi.org/10.3390/photonics8030070
APA StyleRaposo, M., Xavier, C., Monteiro, C., Silva, S., Frazão, O., Zagalo, P., & Ribeiro, P. A. (2021). Thermally Stimulated Desorption Optical Fiber-Based Interrogation System: An Analysis of Graphene Oxide Layers’ Stability. Photonics, 8(3), 70. https://doi.org/10.3390/photonics8030070