A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials
Abstract
:1. Introduction
2. Scintillation Mechanism
3. Emission Dynamics in Inorganic Scintillators
3.1. Emission Decay Dynamics in Halides
3.1.1. Alkali-Metal Halides
3.1.2. Alkaline-Earth Halides
3.1.3. Rare-Earth Halides
3.1.4. Oxy-Halides
3.1.5. Rare-Earth Oxyorthosilicates
3.1.6. Halide Perovskite
3.2. Emission Decay Dynamics in Oxides
3.2.1. Binary Oxides
3.2.2. Complex Oxides
3.2.3. Post-Transition Metal Complex
3.3. Emission Decay Dynamics in Sulfides
3.4. Rare-Earth Doped Scintillators and Refractive Index and Matrix Effect
4. Emission Dynamics of Organic-Inorganic Hybrid Scintillators
4.1. Effect of Dimensionality in Organic-Inorganic Hybrid Perovskites
4.2. Effect of Organic Moieties on the Scintillation Properties of OIHP
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pidol, L.; Kahn-Harari, A.; Viana, B.; Ferrand, B.; Dorenbos, P.; de Haas, J.T.M.; van Eijk, C.W.E.; Virey, E. Scintillation Properties of Lu2Si2O7:Ce3+, a Fast and Efficient Scintillator Crystal. J. Phys. Condens. Matter 2003, 15, 2091–2102. [Google Scholar] [CrossRef]
- Lecoq, P.; Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, 2nd ed.; Particle Acceleration and Detection; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-45521-1. [Google Scholar]
- Shepherd, J.A.; Gruner, S.M.; Tate, M.W.; Tecotzky, M. Study of Afterglow in X-Ray Phosphors for Use on Fast-Framing Charge-Coupled Device Detectors. Opt. Eng. 1997, 36, 3212–3222. [Google Scholar] [CrossRef]
- Neitzel, U. Status and Prospects of Digital Detector Technology for CR and DR. Radiat. Prot. Dosimetry 2005, 114, 32–38. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Marco, A.D.; Incicchitti, A.; Kasperovych, D.V.; et al. Low Background Scintillators to Investigate Rare Processes. J. Instrum. 2020, 15, C07037. [Google Scholar] [CrossRef]
- Pizzichemi, M. The Phase II Upgrade of the LHCb Calorimeter System. J. Instrum. 2020, 15, C05062. [Google Scholar] [CrossRef]
- Luo, Z.; Moch, J.G.; Johnson, S.S.; Chen, C.C. A Review on X-Ray Detection Using Nanomaterials. Curr. Nanosci. 2017, 13, 364–372. [Google Scholar] [CrossRef]
- Sailer, C.; Lubsandorzhiev, B.; Strandhagen, C.; Jochum, J. Low Temperature Light Yield Measurements in NaI and NaI(Tl). Eur. Phys. J. C 2012, 72, 2061. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.C.; Chang, S.F.; Luo, Z. Anodic-Aluminum-Oxide Template Assisted Fabrication of Cesium Iodide (CsI) Scintillator Nanowires. Mater. Lett. 2013, 112, 190–193. [Google Scholar] [CrossRef]
- Shi, C.; Kloiber, T.; Zimmerer, G. Time Resolved Spectra of Intrinsic Emissions from Crystalline BaF2. Phys. Scr. 1990, 41, 1022–1024. [Google Scholar] [CrossRef]
- George, G.; Edwards, C.S.; Hayes, J.I.; Yu, L.; Ede, S.R.; Wen, J.; Luo, Z. A Novel Reversible Fluorescent Probe for the Highly Sensitive Detection of Nitro and Peroxide Organic Explosives Using Electrospun BaWO4 Nanofibers. J. Mater. Chem. C 2019, 7, 14949–14961. [Google Scholar] [CrossRef]
- Srivastava, A.M.; Happek, U.; Schmidt, P. Luminescence of LuCl3:Pr3+ under Interconfigurational (4f2→4f15d1) and Band Gap Excitations. Opt. Mater. 2008, 31, 213–217. [Google Scholar] [CrossRef]
- Boatner, L.A.; Ramey, J.O.; Kolopus, J.A.; Hawrami, R.; Higgins, W.M.; van Loef, E.; Glodo, J.; Shah, K.S.; Rowe, E.; Bhattacharya, P.; et al. Bridgman Growth of Large SrI2:Eu2+ Single Crystals: A High-Performance Scintillator for Radiation Detection Applications. J. Cryst. Growth 2013, 379, 63–68. [Google Scholar] [CrossRef]
- Dorenbos, P. Scintillation Mechanisms in Ce3+ Doped Halide Scintillators. Phys. Status Solidi A 2005, 202, 195–200. [Google Scholar] [CrossRef]
- Nikl, M. Scintillation Detectors for X-rays. Meas. Sci. Technol. 2006, 17, R37–R54. [Google Scholar] [CrossRef]
- Shwetha, G.; Kanchana, V.; Vaitheeswaran, G. CsMgCl3: A Promising Cross Luminescence Material. J. Solid State Chem. 2015, 227, 110–116. [Google Scholar] [CrossRef]
- Van Eijk, C.W.E. Cross-Luminescence. J. Lumin. 1994, 60–61, 936–941. [Google Scholar] [CrossRef]
- Song, K.S.; Williams, R.T. Self-Trapped Excitons; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1993; ISBN 978-3-642-97432-8. [Google Scholar]
- Smith, M.D.; Connor, B.A.; Karunadasa, H.I. Tuning the Luminescence of Layered Halide Perovskites. Chem. Rev. 2019, 119, 3104–3139. [Google Scholar] [CrossRef]
- Murray, R.B. Energy Transfer in Alkali Halide Scintillators by Electron-Hole Diffusion and Capture. IEEE Trans. Nucl. Sci. 1975, 22, 54–57. [Google Scholar] [CrossRef]
- Rodnyi, P.A. Physical Processes in Inorganic Scintillators, 1st ed.; CRC Press: Boca Raton, FL, USA, 1997; ISBN 978-0-8493-3788-8. [Google Scholar]
- Sibczynski, P.; Moszyńsk, M.; Czarnacki, W.; Syntfeld-Każuch, A.; Schotanus, P. Further Study of Undoped NaI Scintillators with Different Purity. In Proceedings of the IEEE Nuclear Science Symposuim & Medical Imaging Conference, Knoxville, TN, USA, 30 October–6 November 2010; pp. 574–579. [Google Scholar] [CrossRef]
- Kubota, S.; Sakuragi, S.; Hashimoto, S.; Ruan, J. A New Scintillation Material: Pure CsI with 10 Ns Decay Time. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1988, 268, 275–277. [Google Scholar] [CrossRef]
- Schotanus, P.; Kamermans, R. Scintillation Characteristics of Pure and Tl-Doped CsI Crystals. IEEE Trans. Nucl. Sci. 1990, 37, 177–182. [Google Scholar] [CrossRef]
- Moszyński, M.; Zalipska, J.; Balcerzyk, M.; Kapusta, M.; Mengesha, W.; Valentine, J.D. Intrinsic Energy Resolution of NaI(Tl). Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2002, 484, 259–269. [Google Scholar] [CrossRef]
- Payne, S.A.; Cherepy, N.J.; Hull, G.; Valentine, J.D.; Moses, W.W.; Choong, W.-S. Nonproportionality of Scintillator Detectors: Theory and Experiment. IEEE Trans. Nucl. Sci. 2009, 56, 2506–2512. [Google Scholar] [CrossRef]
- Sibczyński, P.; Moszyński, M.; Szczęśniak, T.; Czarnacki, W. Study of NaI(Tl) Scintillator Cooled down to Liquid Nitrogen Temperature. J. Instrum. 2012, 7, P11006. [Google Scholar] [CrossRef]
- Moszyński, M.; Balcerzyk, M.; Czarnacki, W.; Kapusta, M.; Klamra, W.; Schotanus, P.; Syntfeld, A.; Szawlowski, M.; Kozlov, V. Energy Resolution and Non-Proportionality of the Light Yield of Pure CsI at Liquid Nitrogen Temperatures. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2005, 537, 357–362. [Google Scholar] [CrossRef]
- Holl, I.; Lorenz, E.; Mageras, G. A Measurement of the Light Yield of Common Inorganic Scintillators. IEEE Trans. Nucl. Sci. 1988, 35, 105–109. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H. Performance of Scintillation Materials at Cryogenic Temperatures. Phys. Status Solidi B 2010, 247, 1583–1599. [Google Scholar] [CrossRef] [Green Version]
- Bernabei, R.; Incicchitti, A. Low Background Techniques in NaI(Tl) Setups. Int. J. Mod. Phys. A 2017, 32, 1743007. [Google Scholar] [CrossRef]
- Han, H.; Zhang, Z.; Weng, X.; Liu, J.; Guan, X.; Zhang, K.; Li, G. Development of a Fast Radiation Detector Based on Barium Fluoride Scintillation Crystal. Rev. Sci. Instrum. 2013, 84, 073503. [Google Scholar] [CrossRef]
- Schotanus, P.; Dorenbos, P.; van Eijk, C.W.E.; Lamfers, H.J. Suppression of the Slow Scintillation Light Output of BaF2 Crystals by La3+ Doping. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1989, 281, 162–166. [Google Scholar] [CrossRef]
- Stefan, D.; Rainer, W.N.; Benjamin, W.; Reinhard, B. Readout Concepts for the Suppression of the Slow Component of BaF2 for the Upgrade of the TAPS Spectrometer at ELSA. J. Phys. Conf. Ser. 2015, 587. [Google Scholar] [CrossRef]
- Koshimizu, M.; Onodera, K.; Shibuya, K.; Saito, H.; Asai, K. Timing Property of Undoped BaCl2 Single Crystal Scintillator. J. Appl. Phys. 2009, 105, 114912. [Google Scholar] [CrossRef]
- Heo, J.H.; Shin, D.H.; Park, J.K.; Kim, D.H.; Lee, S.J.; Im, S.H. High-Performance Next-Generation Perovskite Nanocrystal Scintillator for Nondestructive X-Ray Imaging. Adv. Mater. 2018, 30, 1801743. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. High-Light-Output Scintillator for Photodiode Readout: LuI3:Ce3+. J. Appl. Phys. 2006, 99, 123520. [Google Scholar] [CrossRef] [Green Version]
- Nikl, M.; Ogino, H.; Krasnikov, A.; Beitlerova, A.; Yoshikawa, A.; Fukuda, T. Photo- and Radioluminescence of Pr-doped Lu3Al5O12 Single Crystal. Phys. Status Solidi A 2005, 202, R4–R6. [Google Scholar] [CrossRef]
- Hofstadter, R.; O’Dell, E.W.; Schmidt, C.T. CaI2 and CaI2(Eu) Scintillation Crystals. IEEE Trans. Nucl. Sci. 1964, 11, 12–14. [Google Scholar] [CrossRef]
- Cherepy, N.J.; Hull, G.; Drobshoff, A.D.; Payne, S.A.; van Loef, E.; Wilson, C.M.; Shah, K.S.; Roy, U.N.; Burger, A.; Boatner, L.A.; et al. Strontium and Barium Iodide High Light Yield Scintillators. Appl. Phys. Lett. 2008, 92, 083508. [Google Scholar] [CrossRef] [Green Version]
- Boatner, L.A.; Ramey, J.O.; Kolopus, J.A.; Neal, J.S.; Cherepy, N.J.; Beck, P.R.; Payne, S.A.; Burger, A.; Rowe, E.; Bhattacharya, P. Advances in the Growth of Alkaline-Earth Halide Single Crystals for Scintillator Detectors. In Proceedings of the Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XVI, San Diego, CA, USA, 18–20 August 2014; International Society for Optics and Photonics: Bellingham, WA, USA, 5 September 2014; Volume 9213, p. 92130J. [Google Scholar]
- Cherepy, N.J.; Payne, S.A.; Asztalos, S.J.; Hull, G.; Kuntz, J.D.; Niedermayr, T.; Pimputkar, S.; Roberts, J.J.; Sanner, R.D.; Tillotson, T.M.; et al. Scintillators With Potential to Supersede Lanthanum Bromide. IEEE Trans. Nucl. Sci. 2009, 56, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Eagleman, Y.D.; Bourret-Courchesne, E.; Derenzo, S.E. Room-Temperature Scintillation Properties of Cerium-Doped REOX (RE=Y, La, Gd, and Lu; X=F, Cl, Br, and I). J. Lumin. 2011, 131, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Rabatin, J.G. Luminescence of Rare Earth Activated Lutetium Oxyhalide Phosphors. J. Electrochem. Soc. 1982, 129, 1552. [Google Scholar] [CrossRef]
- Melcher, C.L.; Manente, R.A.; Peterson, C.A.; Schweitzer, J.S. Czochralski Growth of Rare Earth Oxyorthosilicate Single Crystals. J. Cryst. Growth 1993, 128, 1001–1005. [Google Scholar] [CrossRef]
- Martin, T.; Douissard, P.; Couchaud, M.; Cecilia, A.; Baumbach, T.; Dupre, K.; Rack, A. LSO-Based Single Crystal Film Scintillator for Synchrotron-Based Hard X-Ray Micro-Imaging. IEEE Trans. Nucl. Sci. 2009, 56, 1412–1418. [Google Scholar] [CrossRef]
- Zorenko, Y.; Gorbenko, V.; Konstankevych, I.; Grinev, B.; Globus, M. Scintillation Properties of Lu3Al5O12:Ce Single-Crystalline Films. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2002, 486, 309–314. [Google Scholar] [CrossRef]
- Shimizu, S.; Kurashige, K.; Usui, T.; Shimura, N.; Sumiya, K.; Senguttuvan, N.; Gunji, A.; Kamada, M.; Ishibashi, H. Scintillation Properties of Lu0.4Gd1.6SiO5:Ce (LGSO) Crystal. IEEE Trans. Nucl. Sci. 2006, 53, 14–17. [Google Scholar] [CrossRef]
- David, S.; Michail, C.; Valais, I.; Nikolopoulos, D.; Kalivas, N.; Kalatzis, I.; Karatopis, A.; Cavouras, D.; Loudos, G.; Panayiotakis, G.S.; et al. Luminescence Efficiency of Lu2SiO5:Ce (LSO) Powder Scintillator for X-Ray Medical Radiography Applications. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, USA, 29 October–1 November 2006; Volume 2, pp. 1178–1182. [Google Scholar]
- Syntfeld-Kazuch, A.; Moszynski, M.; Swiderski, L.; Szczesniak, T.; Nassalski, A.; Melcher, C.L.; Spurrier, M.A. Energy Resolution of Calcium Co-Doped LSO:Ce Scintillators. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 2744–2750. [Google Scholar]
- Szcześniak, T.; Moszyński, M.; Synfeld-Każuch, A.; Świderski, Ł.; Koschan, M.A.S.; Melcher, C.L. Timing Resolution and Decay Time of LSO Crystals Co-Doped With Calcium. IEEE Trans. Nucl. Sci. 2010, 57, 1329–1334. [Google Scholar] [CrossRef]
- Tamulatis, G.; Dosovitskiy, G.; Gola, A.; Korjik, M.; Mazzi, A.; Nargelas, S.; Sokolov, P.; Vaitkevičius, A. Improvement of Response Time in GAGG:Ce Scintillation Crystals by Magnesium Codoping. J. Appl. Phys. 2018, 124, 215907. [Google Scholar] [CrossRef]
- George, G.; Ede, S.R.; Luo, Z. Fundamentals of Perovskite Oxides Synthesis, Structure, Properties and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 978-0-367-35448-0. [Google Scholar]
- Chen, H.; Wang, H.; Wu, J.; Wang, F.; Zhang, T.; Wang, Y.; Liu, D.; Li, S.; Penty, R.V.; White, I.H. Flexible Optoelectronic Devices Based on Metal Halide Perovskites. Nano Res. 2020, 13, 1997–2018. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C. X-Ray Scintillation in Lead Halide Perovskite Crystals. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Fu, K.; Sun, R.; Lian, H.; Hu, X.; Zhang, Y. Ultra-Stable CsPbBr3 Perovskite Nanosheets for X-Ray Imaging Screen. Nano-Micro Lett. 2019, 11, 52. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Bladt, E.; Aygüler, M.F.; Manzi, A.; Milowska, K.Z.; Hintermayr, V.A.; Docampo, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; et al. Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angew. Chem. Int. Ed. 2016, 55, 13887–13892. [Google Scholar] [CrossRef] [PubMed]
- Jellicoe, T.C.; Richter, J.M.; Glass, H.F.J.; Tabachnyk, M.; Brady, R.; Dutton, S.E.; Rao, A.; Friend, R.H.; Credgington, D.; Greenham, N.C.; et al. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944. [Google Scholar] [CrossRef] [Green Version]
- Blasse, G. Scintillator Materials. Chem. Mater. 1994, 6, 1465–1475. [Google Scholar] [CrossRef]
- Xie, A.; Nguyen, T.H.; Hettiarachchi, C.; Witkowski, M.E.; Drozdowski, W.; Birowosuto, M.D.; Wang, H.; Dang, C. Thermal Quenching and Dose Studies of X-Ray Luminescence in Single Crystals of Halide Perovskites. J. Phys. Chem. C 2018, 122, 16265–16273. [Google Scholar] [CrossRef]
- Rodnyi, P.A. Core–Valence Luminescence in Scintillators. Radiat. Meas. 2004, 38, 343–352. [Google Scholar] [CrossRef]
- deQuilettes, D.W.; Frohna, K.; Emin, D.; Kirchartz, T.; Bulovic, V.; Ginger, D.S.; Stranks, S.D. Charge-Carrier Recombination in Halide Perovskites. Chem. Rev. 2019, 119, 11007–11019. [Google Scholar] [CrossRef] [PubMed]
- Dexter, D.L. Theory of the Optical Properties of Imperfections in Nonmetals. In Solid State Physics; Seitz, F., Turnbull, D., Eds.; Advances in Research and Applications; Academic Press: Cambridge, MA, USA, 1958; Volume 6, pp. 353–411. [Google Scholar]
- Wilkinson, J.; Ucer, K.B.; Williams, R.T. Picosecond Excitonic Luminescence in ZnO and Other Wide-Gap Semiconductors. Radiat. Meas. 2004, 38, 501–505. [Google Scholar] [CrossRef]
- Laval, M.; Moszyński, M.; Allemand, R.; Cormoreche, E.; Guinet, P.; Odru, R.; Vacher, J. Barium Fluoride—Inorganic Scintillator for Subnanosecond Timing. Nucl. Instrum. Methods Phys. Res. 1983, 206, 169–176. [Google Scholar] [CrossRef]
- Shendrik, R.; Radzhabov, E. Absolute Light Yield Measurements on SrF2 and BaF2 Doped With Rare Earth Ions. IEEE Trans. Nucl. Sci. 2014, 61, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Moszyński, M.; Gresset, C.; Vacher, J.; Odru, R. Properties of CsF, a Fast Inorganic Scintillator in Energy and Time Spectroscopy. Nucl. Instrum. Methods 1981, 179, 271–276. [Google Scholar] [CrossRef]
- Moszyński, M.; Allemand, R.; Laval, M.; Odru, R.; Vacher, J. Recent Progress in Fast Timing with CsF Scintillators in Application to Time-of-Flight Positron Tomography in Medicine. Nucl. Instrum. Methods Phys. Res. 1983, 205, 239–249. [Google Scholar] [CrossRef]
- Derenzo, S.E.; Bourret-Courchesne, E.; Yan, Z.; Bizarri, G.; Canning, A.; Zhang, G. Experimental and Theoretical Studies of Donor–Acceptor Scintillation from PbI2. J. Lumin. 2013, 134, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Van ’t Spijker, J.C.; Dorenbos, P.; van Eijk, C.W.E.; Jacobs, J.E.M.; den Hartog, H.W.; Korolev, N. Luminescence and Scintillation Properties of BaY2F8:Ce3+, BaLu2F8 and BaLu2F8:Ce3+. J. Lumin. 1999, 85, 11–19. [Google Scholar] [CrossRef]
- Yanagida, T.; Kawaguchi, N.; Fujimoto, Y.; Sugiyama, M.; Furuya, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A.; Chani, V. Growth and Scintillation Properties of BaMgF4. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2010, 621, 473–477. [Google Scholar] [CrossRef]
- Knitel, M.J.; Dorenbos, P.; De Haas, J.T.M.; Van Eijk, C.W.E. LiBaF3 as a Thermal Neutron Scintillator. Radiat. Meas. 1995, 24, 361–363. [Google Scholar] [CrossRef]
- Combes, C.M.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Optical and Scintillation Properties of Pure and Ce3+-Doped Cs2LiYCl6 and Li3YCl6:Ce3+ Crystals. J. Lumin. 1999, 82, 299–305. [Google Scholar] [CrossRef]
- Yahaba, N.; Koshimizu, M.; Sun, Y.; Yanagida, T.; Fujimoto, Y.; Haruki, R.; Nishikido, F.; Kishimoto, S.; Asai, K. X-Ray Detection Capability of a Cs2ZnCl4 Single-Crystal Scintillator. Appl. Phys. Express 2014, 7, 062602. [Google Scholar] [CrossRef] [Green Version]
- Koshimizu, M.; Yahaba, N.; Haruki, R.; Nishikido, F.; Kishimoto, S.; Asai, K. Scintillation and Luminescence Properties of a Single CsCaCl3 Crystal. Opt. Mater. 2014, 36, 1930–1933. [Google Scholar] [CrossRef]
- Kim, M.; Kang, H.; Kim, H.J.; Kim, W.; Park, H.; Kim, S. A Study of CsI(Tl) Scintillator with Optimized Conditions of Large Area Avalanche Photodiode. J. Nucl. Sci. Technol. 2008, 45, 586–589. [Google Scholar] [CrossRef]
- van Loef, E.V.D.; Dorenbos, L.P.; van Eijk, C.W.E.; Kramer, K.; Gudel, H.U. Scintillation Properties of LaCl3:Ce3+ Crystals: Fast, Efficient, and High-Energy Resolution Scintillators. IEEE Trans. Nucl. Sci. 2001, 48, 341–345. [Google Scholar] [CrossRef]
- Hawrami, R.; Glodo, J.; Shah, K.S.; Cherepy, N.; Payne, S.; Burger, A.; Boatner, L. Bridgman Bulk Growth and Scintillation Measurements of SrI2:Eu2+. J. Cryst. Growth 2013, 379, 69–72. [Google Scholar] [CrossRef]
- Yanagida, T.; Okada, G.; Kato, T.; Nakauchi, D.; Yanagida, S. Fast and High Light Yield Scintillation in the Ga2O3 Semiconductor Material. Appl. Phys. Express 2016, 9, 042601. [Google Scholar] [CrossRef]
- Fukabori, A.; Yanagida, T.; Pejchal, J.; Maeo, S.; Yokota, Y.; Yoshikawa, A.; Ikegami, T.; Moretti, F.; Kamada, K. Optical and Scintillation Characteristics of Y2O3 Transparent Ceramic. J. Appl. Phys. 2010, 107, 073501. [Google Scholar] [CrossRef]
- Zdesenko, Y.G.; Avignone, F.T., III; Brudanin, V.B.; Danevich, F.A.; Nagorny, S.S.; Solsky, I.M.; Tretyak, V.I. Scintillation Properties and Radioactive Contamination of CaWO4 Crystal Scintillators. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2005, 538, 657–667. [Google Scholar] [CrossRef]
- Moszyński, M.; Balcerzyk, M.; Czarnacki, W.; Nassalski, A.; Szczęśniak, T.; Kraus, H.; Mikhailik, V.B.; Solskii, I.M. Characterization of CaWO4 Scintillator at Room and Liquid Nitrogen Temperatures. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2005, 553, 578–591. [Google Scholar] [CrossRef]
- Moszynski, M.; Balcerzyk, M.; Kapusta, M.; Syntfeld, A.; Wolski, D.; Pausch, G.; Stein, J.; Schotanus, P. CdWO4 Crystal in Gamma-Ray Spectrometry. IEEE Trans. Nucl. Sci. 2005, 52, 3124–3128. [Google Scholar] [CrossRef]
- Derenzo, S.E.; Moses, W.W.; Cahoon, J.L.; Perera, R.C.C.; Litton, J.E. Prospects for New Inorganic Scintillators. IEEE Trans. Nucl. Sci. 1990, 37, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Usuki, Y.; Ishii, M.; Itoh, M.; Nikl, M. Further Study on Different Dopings into PbWO4 Single Crystals to Increase the Scintillation Light Yield. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2005, 540, 381–394. [Google Scholar] [CrossRef]
- Klamra, W.; Szczesniak, T.; Moszynski, M.; Iwanowska, J.; Swiderski, L.; Syntfeld-Kazuch, A.; Shlegel, V.N.; Vasiliev, Y.V.; Galashov, E.N. Properties of CdWO4 and ZnWO4 Scintillators at Liquid Nitrogen Temperature. J. Instrum. 2012, 7, P03011. [Google Scholar] [CrossRef]
- Oi, T.; Takagi, K.; Fukazawa, T. Scintillation Study of ZnWO4 Single Crystals. Appl. Phys. Lett. 1980, 36, 278–279. [Google Scholar] [CrossRef]
- Derenzo, S.; Bizarri, G.; Borade, R.; Bourret-Courchesne, E.; Boutchko, R.; Canning, A.; Chaudhry, A.; Eagleman, Y.; Gundiah, G.; Hanrahan, S.; et al. New Scintillators Discovered by High-Throughput Screening. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2011, 652, 247–250. [Google Scholar] [CrossRef]
- Baryshevsky, V.G.; Korzhik, M.V.; Moroz, V.I.; Pavlenko, V.B.; Fyodorov, A.A.; Smirnova, S.A.; Egorycheva, O.A.; Kachanov, V.A. YAlO3: Ce-Fast-Acting Scintillators for Detection of Ionizing Radiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1991, 58, 291–293. [Google Scholar] [CrossRef]
- Wojtowicz, A.J.; Glodo, J.; Drozdowski, W.; Przegietka, K.R. Electron Traps and Scintillation Mechanism in YAlO3:Ce and LuAlO3:Ce Scintillators. J. Lumin. 1998, 79, 275–291. [Google Scholar] [CrossRef]
- Ogino, H.; Yoshikawa, A.; Nikl, M.; Krasnikov, A.; Kamada, K.; Fukuda, T. Growth and Scintillation Properties of Pr-Doped Lu3Al5O12 Crystals. J. Cryst. Growth 2006, 287, 335–338. [Google Scholar] [CrossRef]
- Chewpraditkul, W.; Sreebunpeng, K.; Nikl, M.; Mares, J.A.; Nejezchleb, K.; Phunpueok, A.; Wanarak, C. Comparison of Lu3Al5O12:Pr3+ and Bi4Ge3O12 Scintillators for Gamma-Ray Detection. Radiat. Meas. 2012, 47, 1–5. [Google Scholar] [CrossRef]
- Gironnet, J.; Mikhailik, V.B.; Kraus, H.; de Marcillac, P.; Coron, N. Scintillation Studies of Bi4Ge3O12 (BGO) down to a Temperature of 6K. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2008, 594, 358–361. [Google Scholar] [CrossRef]
- Santana, G.C.; de Mello, A.C.S.; Valerio, M.E.G.; Macedo, Z.S. Scintillating Properties of Pure and Doped BGO Ceramics. J. Mater. Sci. 2007, 42, 2231–2235. [Google Scholar] [CrossRef]
- Lehmann, W. Edge Emission of N-Type Conducting ZnO and CdS. Solid-State Electron. 1966, 9, 1107–1110. [Google Scholar] [CrossRef]
- Jagtap, S.; Chopade, P.; Tadepalli, S.; Bhalerao, A.; Gosavi, S. A Review on the Progress of ZnSe as Inorganic Scintillator. Opto Electron. Rev. 2019, 27. [Google Scholar] [CrossRef]
- Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K. The Quest for the Ideal Inorganic Scintillator. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2003, 505, 111–117. [Google Scholar] [CrossRef]
- Korzhik, M. Physics of Fast Processes in Scintillators; Springer Nature: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-21966-6. [Google Scholar]
- Drozdowski, W.; Makowski, M.; Witkowski, M.E.; Wojtowicz, A.J.; Schewski, R.; Irmscher, K.; Galazka, Z. Semiconductor Scintillator Development: Pure and Doped β-Ga2O3. Opt. Mater. 2020, 105, 109856. [Google Scholar] [CrossRef]
- He, N.; Tang, H.; Liu, B.; Zhu, Z.; Li, Q.; Guo, C.; Gu, M.; Xu, J.; Liu, J.; Xu, M.; et al. Ultra-Fast Scintillation Properties of β-Ga2O3 Single Crystals Grown by Floating Zone Method. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2018, 888, 9–12. [Google Scholar] [CrossRef]
- Mykhaylyk, V.B.; Kraus, H.; Kapustianyk, V.; Rudko, M. Growth and Scintillation Properties of Pr-Doped Lu3Al5O12 Crystals. Appl. Phys. Lett. 2019, 115, 081103. [Google Scholar] [CrossRef]
- Harwig, T.; Kellendonk, F.; Slappendel, S. The Ultraviolet Luminescence of β-Galliumsesquioxide. J. Phys. Chem. Solids 1978, 39, 675–680. [Google Scholar] [CrossRef]
- Butler, K.H. Fluorescent Lamp Phosphors: Technology and Theory; Pennsylvania State University Press: University Park, PA, USA, 1980; ISBN 978-0-271-00219-4. [Google Scholar]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 978-3-540-58019-5. [Google Scholar]
- Usui, Y.; Oya, T.; Okada, G.; Kawaguchi, N.; Yanagida, T. Comparative Study of Scintillation and Optical Properties of Ga2O3 Doped with Ns2 Ions. Mater. Res. Bull. 2017, 90, 266–272. [Google Scholar] [CrossRef]
- Zaman, F.; Rooh, G.; Srisittipokakun, N.; Kim, H.J.; Kaewnuam, E.; Meejitpaisan, P.; Kaewkhao, J. Scintillation and Luminescence Characteristics of Ce3+doped in Li2O–Gd2O3–BaO–B2O3 Scintillating Glasses. Radiat. Phys. Chem. 2017, 130, 158–163. [Google Scholar] [CrossRef]
- Tratsiak, Y.; Fedorov, A.; Dosovitsky, G.; Akimova, O.; Gordienko, E.; Korjik, M.; Mechinsky, V.; Trusova, E. Scintillation Efficiency of Binary Li2O-2SiO2 Glass Doped with Ce3+ and Tb3+ Ions. J. Alloys Compd. 2018, 735, 2219–2224. [Google Scholar] [CrossRef] [Green Version]
- Auffray, E.; Augulis, R.; Borisevich, A.; Gulbinas, V.; Fedorov, A.; Korjik, M.; Lucchini, M.T.; Mechinsky, V.; Nargelas, S.; Songaila, E.; et al. Luminescence Rise Time in Self-Activated PbWO4 and Ce-Doped Gd3Al2Ga3O12 Scintillation Crystals. J. Lumin. 2016, 178, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Korzhik, M.V.; Pavlenko, V.B.; Timoschenko, T.N.; Katchanov, V.A.; Singovskii, A.V.; Annenkov, A.N.; Ligun, V.A.; Solskii, I.M.; Peigneux, J.-P. Spectroscopy and Origin of Radiation Centers and Scintillation in PbWO4 Single Crystals. Phys. Status Solidi A 1996, 154, 779–788. [Google Scholar] [CrossRef]
- Lecoq, P.; Dafinei, I.; Auffray, E.; Schneegans, M.; Korzhik, M.V.; Missevitch, O.V.; Pavlenko, V.B.; Fedorov, A.A.; Annenkov, A.N.; Kostylev, V.L.; et al. Lead Tungstate (PbWO4) Scintillators for LHC EM Calorimetry. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1995, 365, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Annenkov, A.A.; Korzhik, M.V.; Lecoq, P. Lead Tungstate Scintillation Material. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2002, 490, 30–50. [Google Scholar] [CrossRef]
- Nikl, M.; Laguta, V.V.; Vedda, A. Complex Oxide Scintillators: Material Defects and Scintillation Performance. Phys. Status Solidi B 2008, 245, 1701–1722. [Google Scholar] [CrossRef]
- Laguta, V.V.; Nikl, M.; Zazubovich, S. Luminescence and Decay of Excitons in Lead Tungstate Crystals. Radiat. Meas. 2007, 42, 515–520. [Google Scholar] [CrossRef]
- Krasnikov, A.; Nikl, M.; Zazubovich, S. Localized Excitons and Defects in PbWO4 Single Crystals: A Luminescence and Photo-thermally Stimulated Disintegration Stud. Phys. Status Solidi B 2006, 243, 1727–1743. [Google Scholar] [CrossRef]
- Bourret, E.D.; Smiadak, D.M.; Borade, R.B.; Ma, Y.; Bizarri, G.; Weber, M.J.; Derenzo, S.E. Scintillation of Tantalate Compounds. J. Lumin. 2018, 202, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Blasse, G.; De Haart, L.G.J. The Nature of the Luminescence of Niobates MNbO3 (M = Li, Na, K). Mater. Chem. Phys. 1986, 14, 481–484. [Google Scholar] [CrossRef]
- Blasse, G.; Brixner, L.H. Luminescence of Perovskite-like Niobates and Tantalates. Mater. Res. Bull. 1989, 24, 363–366. [Google Scholar] [CrossRef]
- Grabmaier, B.C. Crystal Scintillators. IEEE Trans. Nucl. Sci. 1984, 31, 372–376. [Google Scholar] [CrossRef]
- Moncorge, R.; Jacquier, B.; Boulon, G.; Gaume-Mahn, F.; Janin, J. Electronic Structure and Photoluminescence Processes in Bi4Ge3O12 Single Crystal. J. Lumin. 1976, 12–13, 467–472. [Google Scholar] [CrossRef]
- Dieguez, E.; Arizmendi, L.; Cabrera, J.M. X-Ray Induced Luminescence, Photoluminescence and Thermoluminescence of Bi4Ge3O12. J. Phys. C Solid State Phys. 1985, 18, 4777–4783. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, J.; Wang, W.; Hu, Q.; Li, W.; Ruan, W.; Ao, H. Synthesis and Luminescence Properties of CaSnO3:Bi3+ Blue Phosphor and the Emission Improvement by Li+ Ion. Luminescence 2017, 32, 908–912. [Google Scholar] [CrossRef]
- Zazubovich, S. Polarization Spectroscopy of Ns2 Impurity Ions in Alkali Halides. Int. J. Mod. Phys. B 1994, 08, 985–1031. [Google Scholar] [CrossRef]
- Blasse, G.; Bril, A. Investigations on Bi3+-Activated Phosphors. J. Chem. Phys. 1968, 48, 217–222. [Google Scholar] [CrossRef]
- van der Voort, D.; Blasse, G. Luminescence of CaSO4:Bi3+, a Small-Offset Case. J. Solid State Chem. 1992, 99, 404–408. [Google Scholar] [CrossRef]
- Porter-Chapman, Y.; Bourret-Courchesne, E.; Derenzo, S.E. Bi3+ Luminescence in ABiO2Cl (A=Sr, Ba) and BaBiO2Br. J. Lumin. 2008, 128, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.J.; Monchamp, R.R. Luminescence of Bi4Ge3O12: Spectral and Decay Properties. J. Appl. Phys. 1973, 44, 5495–5499. [Google Scholar] [CrossRef]
- Wei, Z.Y.; Zhu, R.Y.; Newman, H.; Yin, Z.W. Radiation Resistance and Fluorescence of Europium Doped BGO Crystals. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 1990, 297, 163–168. [Google Scholar] [CrossRef]
- Shim, J.B.; Yoshikawa, A.; Bensalah, A.; Fukuda, T.; Solovieva, N.; Nikl, M.; Rosetta, E.; Vedda, A.; Yoon, D.H. Luminescence, Radiation Damage, and Color Center Creation in Eu3+-Doped Bi4Ge3O12 Fiber Single Crystals. J. Appl. Phys. 2003, 93, 5131–5135. [Google Scholar] [CrossRef]
- Shim, J.B.; Yoshikawa, A.; Nikl, M.; Vedda, A.; Fukuda, T. Radio-, Photo- and Thermo-Luminescence Characterization in Eu3+-Doped Bi4Ge3O12 Single Crystal for Scintillator Application. Opt. Mater. 2003, 24, 285–289. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Ramazanova, T.F.; Grigoryeva, V.D.; Shlegel, V.N.; Kaczkan, M.; Fetliński, B.; Malinowski, M. Optical Investigation of Eu3+ Doped Bi12GeO20 (BGO) Crystals. Crystals 2020, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Kato, M.; Davies, J.J.; Tanino, H. Photoluminescence of Excitons Bound at Te Isoelectronic Traps in ZnSe. J. Cryst. Growth 1988, 86, 552–557. [Google Scholar] [CrossRef]
- Schotanus, P.; Dorenbos, P.; Ryzhikov, V.D. Detection of CdS(Te) and ZnSe(Te) Scintillation Light with Silicon Photodiodes. IEEE Trans. Nucl. Sci. 1992, 39, 546–550. [Google Scholar] [CrossRef]
- Dorenbos, P. Light Output and Energy Resolution of Ce3+ Doped Scintillators. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2002, 486, 208–213. [Google Scholar] [CrossRef]
- Apple, E.; Williams, F. Associated Donor-Acceptor Luminescent Centers in Zinc Sulfide Phosphors. J. Electrochem. Soc. 1959. [Google Scholar] [CrossRef]
- Era, K.; Shionoya, S.; Wasfflzawa, Y.; Ohmatsu, H. Mechanism of Broad-Band Luminescences in ZnS Phosphors—II. Characteristics of Pair Emission Type Luminescences. J. Phys. Chem. Solids 1968, 29, 1843–1857. [Google Scholar] [CrossRef]
- Shiiki, M.; Kanehisa, O. Electroluminescence of Zinc Sulfide Thin Films Activated with Donors and Acceptors. J. Cryst. Growth 1992, 117, 1035–1039. [Google Scholar] [CrossRef]
- Bhatti, H.S.; Verma, N.K.; Kumar, S. Life-Time Measurements of Doped Zinc Sulphide under Nitrogen Laser Excitation. Indian J. Eng. Mater. Sci. 2000, 7, 461–463. [Google Scholar]
- Kubota, N.; Katagiri, M.; Kamijo, K.; Nanto, H. Evaluation of ZnS-Family Phosphors for Neutron Detectors Using Photon Counting Method. Nucl. Instrum. Methods Phys. Res. A 2004, 529, 321–324. [Google Scholar] [CrossRef]
- Kajiwara, K.; Abe, T.; Okada, H. 4.1: Blue-Emitting ZnS: Ag, Al Phosphor with Longer Lifetime and Saturationless Performance for Projection CRTs. SID Symp. Dig. Tech. Pap. 2002, 33, 6–7. [Google Scholar] [CrossRef]
- Kuzmin, E.S.; Balagurov, A.M.; Bokuchava, G.D.; Zhuk, V.V.; Kudryashev, V.A.; Bulkin, A.P.; Trounov, V.A. Detector for the FSD Fourier-Diffractometer Based on ZnS(Ag)/6LiF Scintillation Screen and Wavelength Shifting Fiber Readout. J. Neutron Res. 2002, 10, 31–41. [Google Scholar] [CrossRef]
- George, G.; Simpson, M.D.; Gautam, B.R.; Fang, D.; Peng, J.; Wen, J.; Davis, J.E.; Ila, D.; Luo, Z. Luminescence Characteristics of Rare-Earth-Doped Barium Hexafluorogermanate BaGeF6 Nanowires: Fast Subnanosecond Decay Time and High Sensitivity in H2O2 Detection. RSC Adv. 2018, 8, 39296–39306. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Khan, A.F.; Chawla, S. Intense Red-Emitting Multi-Rare-Earth Doped Nanoparticles of YVO4 for Spectrum Conversion towards Improved Energy Harvesting by Solar Cells. J. Phys. Appl. Phys. 2013, 46, 365101. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Kotnala, R.K.; Chawla, S. GdPO4:Eu3+ Nanoparticles with Intense Orange Red Emission Suitable for Solar Spectrum Conversion and Their Multifunctionality. J. Lumin. 2014, 146, 486–491. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Chawla, S. Doping Triple Lanthanum Ions in GdPO4 Nanocrystals Through Multiple Synthesis Routes and Their Dual Mode Spectrum Conversion Behaviour. Sci. Adv. Mater. 2015, 7, 496–503. [Google Scholar] [CrossRef]
- Qin, X.; Liu, X.; Huang, W.; Bettinelli, M.; Liu, X. Lanthanide-Activated Phosphors Based on 4f-5d Optical Transitions: Theoretical and Experimental Aspects. Chem. Rev. 2017, 117, 4488–4527. [Google Scholar] [CrossRef] [PubMed]
- Dorenbos, P. Fundamental Limitations in the Performance of Ce3+-, Pr3+-, and Eu2+-Activated Scintillators. IEEE Trans. Nucl. Sci. 2010, 57, 1162–1167. [Google Scholar] [CrossRef]
- Van Pieterson, L.; Wegh, R.T.; Meijerink, A.; Reid, M.F. Emission Spectra and Trends for 4fn−15d↔4fn Transitions of Lanthanide Ions: Experiment and Theory. J. Chem. Phys. 2001, 115, 9382–9392. [Google Scholar] [CrossRef]
- Hoshina, T. 5d→4f Radiative Transition Probabilities of Ce3+ and Eu2+ in Crystals. J. Phys. Soc. Jpn. 1980, 48, 1261–1268. [Google Scholar] [CrossRef]
- Dorenbos, P. The 4fn-4fn − 15d Transitions of the Trivalent Lanthanides in Halogenides and Chalcogenides. J. Lumin. 2000, 91, 91–106. [Google Scholar] [CrossRef]
- Blazek, K.; Krasnikov, A.; Nejezchleb, K.; Nikl, M.; Savikhina, T.; Zazubovich, S. Luminescence and Defects Creation in Ce3+-Doped Lu3Al5O12 Crystals. Phys. Status Solidi B 2004, 241, 1134–1140. [Google Scholar] [CrossRef]
- George, G.; Jackson, S.L.; Mobley, Z.R.; Gautam, B.R.; Fang, D.; Peng, J.; Luo, D.; Wen, J.; Davis, J.E.; Ila, D.; et al. Fast Luminescence from Rare-Earth-Codoped BaSiF6 Nanowires with High Aspect Ratios. J. Mater. Chem. C 2018, 6, 7285–7294. [Google Scholar] [CrossRef]
- George, G.; Hayes, J.I.; Collins, C.N.; Davis, J.E.; Yu, L.; Lin, Y.; Wen, J.; Ila, D.; Luo, Z. Size- and Concentration-Dependent Eu2+/Eu3+ Mixed Luminescent Characteristics of Rare-Earth-Doped CaF2 Nanoparticles and Their Monolithic Epoxy Nanocomposites. J. Alloys Compd. 2021, 857, 157591. [Google Scholar] [CrossRef]
- Kumar, V.; George, G.; Hayes, J.I.; Lin, Y.; Guzelturk, B.; Wen, J.; Luo, Z. Dopant Site-Dependent Luminescence from Rare-Earth Doped Dibarium Octafluorohafnate Ba2HfF8 Nanocubes for Radiation Detection. J. Mater. Chem. C 2021, 9, 1721–1729. [Google Scholar] [CrossRef]
- Nakazawa, E. Charge-Transfer Type Luminescence of Yb3+ Ions in LuPO4 and YPO4. Chem. Phys. Lett. 1978, 56, 161–163. [Google Scholar] [CrossRef]
- Kumar, V.; Wang, G. Tuning Green-to-Red Ratio of Ho3+/Yb3+ Activated GdPO4 Upconversion Luminescence through Eu3+ Doping. J. Lumin. 2018, 199, 188–193. [Google Scholar] [CrossRef]
- Kumar, V.; Bullis, G.; Wang, G. Investigation of NIR-to-Red Upconversion Luminescence Mechanism in Y2O3:Er3+,Yb3+ and the Effect of Co-Doping Zn in the Matrix. J. Lumin. 2017, 192, 982–989. [Google Scholar] [CrossRef]
- Kumar, V.; Zoellner, B.; Maggard, P.A.; Wang, G. Effect of Doping Ge into Y2O3:Ho,Yb on the Green-to-Red Emission Ratio and Temperature Sensing. Dalton Trans. 2018, 47, 11158–11165. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y.; Yanagida, T.; Wakahara, S.; Yagi, H.; Yanagidani, T.; Kurosawa, S.; Yoshikawa, A. Scintillation Properties of Yb3+-Doped YAG Transparent Ceramics. Opt. Mater. 2013, 35, 778–781. [Google Scholar] [CrossRef]
- van Pieterson, L.; Heeroma, M.; de Heer, E.; Meijerink, A. Charge Transfer Luminescence of Yb3+. J. Lumin. 2000, 91, 177–193. [Google Scholar] [CrossRef]
- Diab, H.; Trippé-Allard, G.; Lédée, F.; Jemli, K.; Vilar, C.; Bouchez, G.; Jacques, V.L.R.; Tejeda, A.; Even, J.; Lauret, J.-S.; et al. Narrow Linewidth Excitonic Emission in Organic–Inorganic Lead Iodide Perovskite Single Crystals. J. Phys. Chem. Lett. 2016, 7, 5093–5100. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.J.; Lyu, M.; Yun, J.-H.; Kang, C.J.; Choi, Y.J.; Wang, L. Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−x Clx Perovskite for Resistive Random Access Memory Devices. Adv. Mater. 2015, 27, 6170–6175. [Google Scholar] [CrossRef] [PubMed]
- Mitzi, D.B.; Chondroudis, K.; Kagan, C.R. Organic-Inorganic Electronics. IBM J. Res. Dev. 2001, 45, 29–45. [Google Scholar] [CrossRef]
- Kawano, N.; Koshimizu, M.; Sun, Y.; Yahaba, N.; Fujimoto, Y.; Yanagida, T.; Asai, K. Effects of Organic Moieties on Luminescence Properties of Organic–Inorganic Layered Perovskite-Type Compounds. J. Phys. Chem. C 2014, 118, 9101–9106. [Google Scholar] [CrossRef]
- Lukosi, E.; Smith, T.; Tisdale, J.; Hamm, D.; Seal, C.; Hu, B.; Ahmadi, M. Methylammonium Lead Tribromide Semiconductors: Ionizing Radiation Detection and Electronic Properties. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrom. Detect. Assoc. Equip. 2019, 927, 401–406. [Google Scholar] [CrossRef]
- Xu, Q.; Shao, W.; Liu, J.; Zhu, Z.; Ouyang, X.; Cai, J.; Liu, B.; Liang, B.; Wu, Z.; Ouyang, X. Bulk Organic–Inorganic Methylammonium Lead Halide Perovskite Single Crystals for Indirect Gamma Ray Detection. ACS Appl. Mater. Interfaces 2019, 11, 47485–47490. [Google Scholar] [CrossRef]
- He, Y.; Ke, W.; Alexander, G.C.B.; McCall, K.M.; Chica, D.G.; Liu, Z.; Hadar, I.; Stoumpos, C.C.; Wessels, B.W.; Kanatzidis, M.G. Resolving the Energy of γ-Ray Photons with MAPbI3 Single Crystals. ACS Photonics 2018, 5, 4132–4138. [Google Scholar] [CrossRef]
- van Eijk, C.W.E.; de Haas, J.T.M.; Rodnyi, P.A.; Khodyuk, I.V.; Shibuya, K.; Nishikido, F.; Koshimizu, M. Scintillation Properties of a Crystal of (C6H5(CH2)2NH3)2PbBr4. In Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, Germany, 19–25 October 2008; pp. 3525–3528. [Google Scholar]
- Papavassiliou, G.C. Three- and Low-Dimensional Inorganic Semiconductors. Prog. Solid State Chem. 1997, 25, 125–270. [Google Scholar] [CrossRef]
- Kawano, N.; Koshimizu, M.; Okada, G.; Fujimoto, Y.; Kawaguchi, N.; Yanagida, T.; Asai, K. Scintillating Organic–Inorganic Layered Perovskite-Type Compounds and the Gamma-Ray Detection Capabilities. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Mitzi, D.B. Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4. Chem. Mater. 1996, 8, 791–800. [Google Scholar] [CrossRef]
- Shibuya, K.; Koshimizu, M.; Asai, K.; Shibata, H. Quantum Confinement for Large Light Output from Pure Semiconducting Scintillators. Appl. Phys. Lett. 2004, 84, 4370–4372. [Google Scholar] [CrossRef]
- Hanamura, E. Rapid Radiative Decay and Enhanced Optical Nonlinearity of Excitons in a Quantum Well. Phys. Rev. B 1988, 38, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Kawano, N.; Koshimizu, M.; Horiai, A.; Nishikido, F.; Haruki, R.; Kishimoto, S.; Shibuya, K.; Fujimoto, Y.; Yanagida, T.; Asai, K. Effect of Organic Moieties on the Scintillation Properties of Organic–Inorganic Layered Perovskite-Type Compounds. Jpn. J. Appl. Phys. 2016, 55, 110309. [Google Scholar] [CrossRef]
- Hirasawa, M.; Ishihara, T.; Goto, T. Exciton Features in 0, 2, and 3-Dimensional Networks of [PbI6]4− Octahedra. J. Phys. Soc. Jpn. 1994, 63, 3870–3879. [Google Scholar] [CrossRef]
- Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A. Electronic Structures of Lead Iodide Based Low-Dimensional Crystals. Phys. Rev. B 2003, 67, 155405. [Google Scholar] [CrossRef]
- Horimoto, A.; Kawano, N.; Nakauchi, D.; Kimura, H.; Akatsuka, M.; Yanagida, T. Scintillation Properties of Organic–Inorganic Perovskite-Type Compounds with Fluorophenethylamine. Opt. Mater. 2020, 101, 109686. [Google Scholar] [CrossRef]
Composition | Fastest Decay Component (ns) | Light Yield (Photons/MeV) | Emission Wavelength | References |
---|---|---|---|---|
BaF2 | 0.6 | 9400 ± 600 | 220 nm | [67,68] |
CsF | 2.8 | 500 | 380 nm | [69,70] |
PbI2 | <1 | 40,000 | 520 nn | [71] |
BaLu2F8 | 1.0 | 200 | 298 nm | [72] |
BaMgF4 | 0.57 | 1300 | 205 nm | [73] |
LiBaF3 | 0.8 | 1200 | 300 nm | [74] |
Cs2LiYCl6 | 6600 | 6535 | 240–460 nm | [75] |
Cs2ZnCl4 | 1.8 | 630 | 255 nm | [76] |
Cs2CaCl3 | 2.3 | 410 | 300 nm | [77] |
NaI:Tl+ | 239 | 18,800 ± 940 | 430 nm | [27] |
CsI:Tl+ | 1050 | 40,000–60,000 | 550 nm | [78] |
LuI3:Ce3+ | 6–10 | 98,000 ± 10,000 | 470 nm | [37] |
LaCl3:Ce3+ | 25 | 46,000 ± 3000 | 352 nm | [79] |
SrI2:Eu2+ | 1200 | 90,000 | 435 nm | [13,80] |
CaI2:Eu2+ | 790 | - | 470 nm | [39] |
BaI2:Eu2+ | <1000 | >30,000 | 420 nm | [40] |
Crystal Scintillator Composition | Decay Time (ns) | Light Yield (Photons/MeV) | Emission Wavelength | References |
---|---|---|---|---|
Ga2O3 | 8 | 15,000 ± 1500 | 380 nm | [81] |
Y2O3 | 34 | 93,000 | 350 nm | [82] |
CaWO4 | 8000 | 4800 ± 200 | 420–425 nm | [83,84] |
CdWO4 | 5000 | 27,300 ± 2700 | 475–480 nm | [85] |
PbWO4 | 2.5–98 | 25–35 | 490 nm | [86,87] |
ZnWO4 | 24,000 | 7170 ± 290 | 480 nm | [88,89] |
Zn3TaO8 | 270 | >30,000 | 385 nm | [90] |
ZnO | <1 | - | 380 nm | [66] |
YAlO3:Ce3+ | 27 ± 2 | >1000 | 347 nm | [91,92] |
Lu3Al5O12:Pr3+ | 20–21 | 3660 ± 200 | 320 nm | [93,94] |
Bi4Ge3O12 | 430 | 6900 ± 140 | 450 nm | [95,96] |
ns2 Dopants | τ1 (ns) | τ2 (ns) | τ3 (ns) |
---|---|---|---|
Undoped | 8 (98.7%) | 204 (1.3%) | N/A |
In | 11 (79.0%) | 44 (20.3%) | 977 (0.7%) |
Tl | 20 (77.7%) | 101 (21.6%) | 4338 (0.7%) |
Sn | 21 (89.8%) | 126 (9.9%) | 5203 (0.3%) |
Pb | 16 (75.8%) | 71 (23.3%) | 2694 (0.9%) |
Sb | 11 (88.4%) | 77 (10.1%) | 1923 (1.5%) |
Bi | 15 (74.8%) | 63 (24.5%) | 1066 (0.7%) |
Crystal Scintillator Composition | Decay Time (ns) | Fraction (%) |
---|---|---|
SrBiO2Cl | 50 | 28 |
200 | 38 | |
300 | 14 | |
BaBiO2Cl | 100 | 22 |
300 | 41 | |
600 | 23 | |
BaBiO2Br | 100 | 21 |
300 | 54 | |
700 | 12 | |
Bi4Ge3O12 | 100 | 12 |
300 | 79 | |
1000 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Luo, Z. A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials. Photonics 2021, 8, 71. https://doi.org/10.3390/photonics8030071
Kumar V, Luo Z. A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials. Photonics. 2021; 8(3):71. https://doi.org/10.3390/photonics8030071
Chicago/Turabian StyleKumar, Vineet, and Zhiping Luo. 2021. "A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials" Photonics 8, no. 3: 71. https://doi.org/10.3390/photonics8030071
APA StyleKumar, V., & Luo, Z. (2021). A Review on X-ray Excited Emission Decay Dynamics in Inorganic Scintillator Materials. Photonics, 8(3), 71. https://doi.org/10.3390/photonics8030071