Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres
Abstract
:1. Introduction
2. Method
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pohl, D.W.; Courjon, D. Near Field Optics; Springer: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef]
- Betzig, E.; Patterson, G.H.; Sougrat, R.; Lindwasser, O.W.; Olenych, S.; Bonifacino, J.S.; Davidson, M.W.; Lippincott-Schwartz, J.; Hess, H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642–1645. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.R.; Schurig, D.; Rosenbluth, M.; Schultz, S.; Ramakrishna, S.A.; Pendry, J.B. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 2003, 82, 1506–1508. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, B.H.; Kim, W.Y.; Min, S.K.; Kim, Y.; Jouravlev, M.V.; Bose, R.; Kim, K.S.; Hwang, I.-C.; Kaufman, L.J.; et al. Near-field focusing and magnification through self-assembled nanoscale spherical lenses. Nature 2009, 460, 498–501. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, S.; Li, H.; Lecler, S.; Montgomery, P. Unconventional magnification behaviour in microsphere-assisted microscopy. Opt. Laser Technol. 2019, 114, 40–43. [Google Scholar] [CrossRef]
- Darafsheh, A. Influence of the background medium on imaging performance of microsphere-assisted super-resolution microscopy. Opt. Lett. 2017, 42, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, W.; Yan, Y.; Lee, S.; Wang, T. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2013, 2, e104. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, L.; Yu, H.; Wen, Y.; Yu, P.; Liu, Z.; Wang, Y.; Li, W.J. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging. Nat. Commun. 2016, 7, 13748. [Google Scholar] [CrossRef] [PubMed]
- Perrin, S.; Li, H.; Badu, K.; Comparon, T.; Quaranta, G.; Messaddeq, N.; Lemercier, N.; Montgomery, P.; Vonesch, J.-L.; Lecler, S. Transmission microsphere-assisted dark-field microscopy. Phys. Status Solidi RRL 2019, 13, 1800445. [Google Scholar] [CrossRef]
- Perrin, S.; Donie, Y.J.; Montgomery, P.; Gomard, G.; Lecler, S. Compensated Microsphere-Assisted Interference Microscopy. Phys. Rev. Appl. 2020, 13, 014068. [Google Scholar] [CrossRef]
- Allen, K.W.; Farahi, N.; Li, Y.; Limberopoulos, N.I.; Walker, D.E.; Urbas, A.M.; Astratov, V.N. Overcoming the diffraction limit of imaging nanoplasmonic arrays by microspheres and microfibers. Opt. Express 2015, 23, 24484–24496. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Barbastathis, G.; Zhang, B. Classical imaging theory of a microlens with super-resolution. Opt. Lett. 2013, 38, 2988–2990. [Google Scholar] [CrossRef]
- Maslov, A.; Astratov, V. Resolution and reciprocity in microspherical nanoscopy: Point-spread function versus photonic nanojets. Phys. Rev. Appl. 2019, 11, 064004. [Google Scholar] [CrossRef]
- Lecler, S.; Perrin, S.; Leong-Hoi, A.; Montgomery, P. Photonic jet lens. Sci. Rep. 2019, 9, 4725. [Google Scholar] [CrossRef] [PubMed]
- Darafsheh, A. Photonic nanojets and their applications. J. Phys. Photonics 2021, 3, 022001. [Google Scholar] [CrossRef]
- Yi, K.J.; Wang, H.; Lu, Y.F.; Yang, Z.Y. Enhanced Raman scattering by self-assembled silica spherical microparticles. J. Appl. Phys. 2007, 101, 063528. [Google Scholar] [CrossRef] [Green Version]
- Tehrani, K.F.; Darafsheh, A.; Phang, S.; Mortensen, L.J. Resolution enhancement of 2-photon microscopy using high-refractive index microspheres. Proc. SPIE 2018, 10498, 1049833. [Google Scholar]
- Kassamakov, I.; Lecler, S.; Nolvi, A.; Leong-Hoi, A.; Montgomery, P.; Haeggstrom, E. 3D super-resolution optical profiling using microsphere enhanced Mirau interferometry. Sci. Rep. 2017, 7, 3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q.; Wang, D.; Wang, Y.; Rong, L.; Zhao, J.; Guo, S.; Wang, M. Super-resolution imaging by microsphere-assisted optical microscopy. Opt. Quantum Electron. 2016, 48, 557. [Google Scholar] [CrossRef]
- Yang, S.; Ye, Y.-H.; Shi, Q.; Zhang, J. Converting Evanescent Waves into Propagating Waves: The Super-Resolution Mechanism in Microsphere-Assisted Microscopy. J. Phys. Chem. A C 2020, 124, 25951–25956. [Google Scholar] [CrossRef]
- Zhou, S.; Deng, Y.; Zhou, W.; Yu, M.; Urbach, H.P.; Wu, Y. Effects of whispering gallery mode in microsphere super-resolution imaging. Appl. Phys. 2017, 123, 236. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y. Increase of resolution by use of microspheres related to complex Snell’s law. JOSA A 2016, 33, 2284–2288. [Google Scholar] [CrossRef] [PubMed]
- Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Lai, H.S.S.; Wang, F.; Li, Y.; Jia, B.; Liu, L.; Li, W.J. Super-resolution real imaging in microsphere-assisted microscopy. PLoS ONE 2016, 11, e0165194. [Google Scholar] [CrossRef] [Green Version]
- Astratov, V.N.; Brettin, A.; Abolmaali, F.; Poffo, L.; Maslov, A.V. Plasmonics and Super resolution in Microspherical Nanoscopy. In Proceedings of the 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; pp. 1–4. [Google Scholar]
- Mollaei, M.; Simovski, C. Dual-metasurface superlens: A comprehensive study. Phys. Rev. B 2019, 100, 205426. [Google Scholar] [CrossRef] [Green Version]
- Darafsheh, A.; Walsh, G.F.; Negro, L.D.; Astratov, V.N. Optical super-resolution by high-index liquid-immersed microspheres. Appl. Phys. Lett. 2012, 101, 141128. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Li, P.; Yu, H.; Wang, F.; Wang, X.; Yang, T.; Yang, W.; Li, W.J.; Wang, Y.; Liu, L. Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl. Surf. Sci. 2020, 504, 144375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boudoukha, R.; Perrin, S.; Demagh, A.; Montgomery, P.; Demagh, N.-E.; Lecler, S. Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics 2021, 8, 73. https://doi.org/10.3390/photonics8030073
Boudoukha R, Perrin S, Demagh A, Montgomery P, Demagh N-E, Lecler S. Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics. 2021; 8(3):73. https://doi.org/10.3390/photonics8030073
Chicago/Turabian StyleBoudoukha, Rayenne, Stephane Perrin, Assia Demagh, Paul Montgomery, Nacer-Eddine Demagh, and Sylvain Lecler. 2021. "Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres" Photonics 8, no. 3: 73. https://doi.org/10.3390/photonics8030073
APA StyleBoudoukha, R., Perrin, S., Demagh, A., Montgomery, P., Demagh, N. -E., & Lecler, S. (2021). Near- to Far-Field Coupling of Evanescent Waves by Glass Microspheres. Photonics, 8(3), 73. https://doi.org/10.3390/photonics8030073