Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water
Abstract
:1. Introduction
2. Theory and Method
3. Spatiotemporal Intensity Evolution of the SCTLGSM Pulsed Beams in Water
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Korotkova, O. Random Light Beams: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Cai, Y.J.; Chen, Y.H.; Wang, F. Generation and propagation of partially coherent beams with nonconventional correlation functions: A review [Invited]. J. Opt. Soc. Am. A 2014, 31, 2083–2096. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.J.; Wang, F.; Chen, Y.H.; Liu, X.L. Recent advances in partially coherent beams with prescribed degrees of coherence. Sci. Found. China 2017, 25, 38–60. [Google Scholar]
- Cai, Y.J.; Chen, Y.H.; Yu, J.Y.; Liu, X.L.; Liu, L. Generation of Partially Coherent Beams. Prog. Opt. 2017, 62, 157–223. [Google Scholar]
- Wan, L.P.; Zhao, D.M. Controllable rotating Gaussian Schell-model beams. Opt. Lett. 2019, 44, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Wang, J.; Huang, H.K.; Wang, H.Y.; Zhu, S.J.; Li, Z.H.; Lu, J. Propagation Characteristics of a Twisted Cosine-Gaussian Correlated Radially Polarized Beam. Appl. Sci. 2018, 8, 1485. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.M.; Yuan, C.F.; Ji, X.L.; Wang, T. Ring-shaped twisted Gaussian Schell-model array beams. J. Opt. Soc. Am. A 2020, 37, 444–449. [Google Scholar] [CrossRef]
- Hyde IV, M.W.; Bose-Pillai, S.; Voelz, D.G.; Xiao, X. A fast and efficient method for producing partially coherent sources. J. Opt. 2017, 19, 025601. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Guo, M.J.; Feng, Z.F.; Li, J.H. Change in phase singularities of a partially coherent Gaussian vortex beam propagating in a GRIN fiber. Opt. Express 2020, 28, 4661–4673. [Google Scholar] [CrossRef]
- Mei, Z.R.; Korotkova, O. Cosine-Gaussian Schell-model sources. Opt. Lett. 2013, 38, 2578–2580. [Google Scholar] [CrossRef]
- Chen, Y.H.; Gu, J.X.; Wang, F.; Cai, Y.J. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam. Phys. Rev. A 2015, 91, 013823. [Google Scholar] [CrossRef]
- Liang, C.H.; Wang, F.; Liu, X.L.; Cai, Y.J.; Korotkova, O. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt. Lett. 2014, 39, 769–772. [Google Scholar] [CrossRef] [PubMed]
- Lajunen, H.; Saastamoinen, T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett. 2011, 36, 4104–4106. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Ponomarenko, S.A.; Cai, Y.J. Self-steering partially coherent beams. Sci. Rep. 2017, 7, 39957. [Google Scholar] [CrossRef] [Green Version]
- Sahin, S.; Korotkova, O. Light sources generating far fields with tunable flat profiles. Opt. Lett. 2012, 37, 2970–2972. [Google Scholar] [CrossRef]
- Liang, C.H.; Khosravi, R.; Liang, X.; Kacerovská, B.; Monfared, Y.E. Standard and elegant higher-order Laguerre-Gaussian correlated Schell-model beams. J.Opt. 2019, 21, 085607. [Google Scholar] [CrossRef]
- Korotkova, O. Random sources for rectangular far fields. Opt. Lett. 2014, 39, 64–67. [Google Scholar] [CrossRef]
- Wan, L.P.; Zhao, D.M. Optical coherence grids and their propagation characteristics. Opt. Express 2018, 26, 2168–2180. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wang, F.; Zhao, C.L.; Cai, Y.J. Experimental demonstration of a Laguerre-Gaussian correlated Schell-model vortex beam. Opt. Express 2014, 22, 5826–5838. [Google Scholar] [CrossRef]
- Gbur, G. Partially coherent beam propagation in atmospheric turbulence [Invited]. J. Opt. Soc. Am. A 2014, 31, 2038–2045. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Lajunen, H.; Tervo, J.; Turunen, J. Imaging with partially coherent light: Elementary-field approach. Opt. Express 2015, 23, 28132–28140. [Google Scholar] [CrossRef]
- Wu, G.F.; Cai, Y.J. Detection of a semirough target in turbulent atmosphere by a partially coherent beam. Opt. Lett. 2011, 36, 1939–1941. [Google Scholar] [CrossRef]
- Korotkova, O.; Chen, X. Phase structuring of the complex degree of coherence. Opt. Lett. 2018, 43, 4727–4730. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, O.; Chen, X.; Setälä, T. Electromagnetic Schell-model beams with arbitrary complex correlation states. Opt. Lett. 2019, 44, 4945–4948. [Google Scholar] [CrossRef] [PubMed]
- Pääkkönen, P.; Turunen, J.; Vahimaa, P.; Friberg, A.T.; Wyrowski, F. Partially coherent Gaussian pulses. Opt. Commun. 2002, 204, 53–58. [Google Scholar] [CrossRef]
- Lin, Q.; Wang, L.G.; Zhu, S.Y. Partially coherent light pulse and its propagation. Opt. Commun. 2003, 219, 65–70. [Google Scholar] [CrossRef]
- Turunen, J. Low-coherence laser beams. In Laser Beam Propagation: Generation and Propagation of Customized Light; Forbes, A., Ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bourassin-Bouchet, C.; Couprie, M.E. Partially coherent ultrafast spectrography. Nat. Commun. 2015, 6, 6465. [Google Scholar] [CrossRef] [Green Version]
- Lajunen, H.; Saastamoinen, T. Non-uniformly correlated partially coherent pulses. Opt. Express 2013, 21, 190–195. [Google Scholar] [CrossRef]
- Ding, C.L.; Korotkova, O.; Pan, L.Z. The control of pulse profiles with tunable temporal coherence. Phys. Lett. A 2014, 378, 1687–1690. [Google Scholar] [CrossRef]
- Ding, C.L.; Koivurova, M.; Turunen, J.; Pan, L.Z. Temporal self-splitting of optical pulses. Phys. Rev. A 2018, 97, 053838. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Zhao, D.M.; Tian, K.H.; Pan, W.Q.; Zhang, K.W. Gaussian temporal modulation for the behavior of multi-sinc Schell-model pulses in dispersive media. Opt. Commun. 2018, 416, 160–165. [Google Scholar] [CrossRef]
- Tang, M.M.; Zhao, D.M.; Zhu, Y.B.; Ang, L.-K. Electromagnetic sinc Schell-model pulses in dispersive media. Phys. Lett. A 2016, 380, 794–797. [Google Scholar] [CrossRef]
- Ding, C.L.; Korotkova, O.; Zhao, D.M.; Li, D.L.; Zhao, Z.G.; Pan, L.Z. Propagation of temporal coherence gratings in dispersive medium with a chirper. Opt. Express 2020, 28, 7463–7474. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Ding, C.L.; Hyde, M.W., IV; Korotkova, O. Non-stationary pulses with complex-valued temporal degree of coherence. J.Opt. 2020, 22, 105607. [Google Scholar] [CrossRef]
- Ding, C.L.; Korotkova, O.; Zhang, Y.T.; Pan, L.Z. Cosine-Gaussian correlated Schell-model pulsed beams. Opt. Express 2014, 22, 931–942. [Google Scholar] [CrossRef] [PubMed]
- Torres-Company, V.; Mínguez-Vega, G.; Lancis, J.; Friberg, A.T. Controllable generation of partially coherent light pulses with direct space-to-time pulse shaper. Opt. Lett. 2007, 32, 1608–1610. [Google Scholar] [CrossRef] [PubMed]
- Christov, I.P. Propagation of Partially Coherent Light Pulses. Opt. Acta Int. J. Opt. 1986, 33, 63–72. [Google Scholar] [CrossRef]
- Lajunen, H.; Vahimaa, P.; Tervo, J. Theory of spatially and spectrally partially coherent pulses. J. Opt. Soc. Am. A 2005, 22, 1536–1545. [Google Scholar] [CrossRef]
- Torres-Company, V.; Lajunen, H.; Lancis, J.; Friberg, A.T. Ghost interference with classical partially coherent light pulses. Phys. Rev. A 2008, 77, 043811. [Google Scholar] [CrossRef] [Green Version]
- Shirai, T.; Setälä, T.; Friberg, A.T. Temporal ghost imaging with classical non-stationary pulsed light. J. Opt. Soc. Am. B 2010, 27, 2549–2555. [Google Scholar] [CrossRef]
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical coherence tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [Green Version]
- Bertolotti, M.; Ferrari, A.; Sereda, L. Coherence properties of nonstationary polychromatic light sources. J. Opt. Soc. Am. B 1995, 12, 341–347. [Google Scholar] [CrossRef]
- Sereda, L.; Bertolotti, M.; Ferrari, A. Coherence properties of nonstationary light wave fields. J. Opt. Soc. Am. A 1998, 15, 695–705. [Google Scholar] [CrossRef]
- Dijaili, S.P.; Dienes, A.; Smith, J.S. ABCD matrices for dispersive pulse propagation. IEEE J. Quantum Elect. 1990, 26, 1158–1164. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University: Cambridge, UK, 1995. [Google Scholar]
- Luo, M.L.; Zhao, D.M. Characterizing the polarization and cross-polarization of electromagnetic vortex pulses in the space-time and space-frequency domain. Opt. Express 2015, 23, 4153–4162. [Google Scholar] [CrossRef]
- Turunen, J.; Friberg, A.T. Matrix representation of Gaussian Schell-model beams in optical systems. Opt. Laser Technol. 1986, 18, 259–267. [Google Scholar] [CrossRef]
- Lajunen, H.; Turunen, J.; Vahimaa, P.; Tervo, J.; Wyrowski, F. Spectrally partially coherent pulse trains in dispersive media. Opt. Commun. 2005, 255, 12–22. [Google Scholar] [CrossRef]
- Daimon, M.; Masumura, A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 2007, 46, 3811–3820. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Liu, L.R.; Sun, J.F. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence. J. Opt. A Pure Appl. Opt. 2006, 8, 1052. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Schnebelin, C.; Cassagne, C.; de Araújo, C.B.; Boudebs, G. Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064 nm using the D4σ method. Opt. Lett. 2014, 39, 5046–5049. [Google Scholar] [CrossRef] [Green Version]
- Sedov, E.V.; Redyuk, A.A.; Fedoruk, M.P.; Gelash, A.A.; Frumin, L.L.; Turitsyn, S.K. Soliton content in the standard optical OFDM signal. Opt. Lett. 2018, 43, 5985–5988. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Wang, J. Propagation characteristics of non-uniformly Sinc-correlated blue-green laser beam through oceanic turbulence. Infrared Laser Eng. 2020, 49, 20190370. [Google Scholar] [CrossRef]
- Gori, F.; Santarsiero, M. Devising genuine spatial correlation functions. Opt. Lett. 2007, 32, 3531–3533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patera, G.; Horoshko, D.B.; Kolobov, M.I. Space-time duality and quantum temporal imaging. Phys. Rev. A 2018, 98, 053815. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, C.; Korotkova, O.; Horoshko, D.; Zhao, Z.; Pan, L. Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water. Photonics 2021, 8, 102. https://doi.org/10.3390/photonics8040102
Ding C, Korotkova O, Horoshko D, Zhao Z, Pan L. Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water. Photonics. 2021; 8(4):102. https://doi.org/10.3390/photonics8040102
Chicago/Turabian StyleDing, Chaoliang, Olga Korotkova, Dmitri Horoshko, Zhiguo Zhao, and Liuzhan Pan. 2021. "Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water" Photonics 8, no. 4: 102. https://doi.org/10.3390/photonics8040102
APA StyleDing, C., Korotkova, O., Horoshko, D., Zhao, Z., & Pan, L. (2021). Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water. Photonics, 8(4), 102. https://doi.org/10.3390/photonics8040102