Computational Method for Wavefront Sensing Based on Transport-of-Intensity Equation
Abstract
:1. Introduction
2. Reconstruction of the Phase of a Coherent Field via Transport-of-Intensity Equation
3. Proposed Method
- Obtaining a set of complex amplitudes , …, by propagating the original field through space using the angular spectrum method [34], or acquiring a set of intensities from measurements in a physical experiment (dashed block);
- Calculation of the theoretical RoC of the wavefront Rt(z) using the geometric method;
- Calculation of phase components ϕuw,TIE(I, ∂I/∂zi) using only intensities by solving the TIE (i.e., Equation (8));
- Calculation of RoC of the wavefront RTIE(z) using the initial intensities (step 1) and phases obtained in step 3 by the geometric method;
- Comparative analysis of Rt(z) and RTIE(z).
4. The Limits of Applicability of Methods for Measuring the Curvature of the Wavefront
4.1. Shack–Hartmann Sensor
4.2. Holographic Method Based on a Spatial Light Modulator
4.3. Method Based on the Transport-of-Intensity Equation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, Y.; Depeursinge, C.; Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 2018, 12, 578–589. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Dashtdar, M.; Sánchez-Ortiga, E.; Martínez-Corral, M.; Javidi, B. Stable and simple quantitative phase-contrast imaging by Fresnel biprism. Appl. Phys. Lett. 2018, 112, 113701. [Google Scholar] [CrossRef] [Green Version]
- Popoff, S.M.; Lerosey, G.; Carminati, R.; Fink, M.; Boccara, A.C.; Gigan, S. Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media. Phys. Rev. Lett. 2010, 104, 100601. [Google Scholar] [CrossRef] [PubMed]
- Tyson, R. Principles of Adaptive Optics; CRC Press: Boca Raton, FL, USA, 2010; pp. 159–231. [Google Scholar]
- Bowman, R.W.; Wright, A.J.; Padgett, M.J. An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers. J. Opt. 2010, 12, 124004. [Google Scholar] [CrossRef]
- Gaviola, E. On the Quantitative Use of the Foucault Knife-Edge Test. J. Opt. Soc. Am. 1936, 26, 163. [Google Scholar] [CrossRef]
- Platt, B.C.; Shack, R. History and Principles of Shack-Hartmann Wavefront Sensing. J. Refract. Surg. 2001, 17, S573–S577. [Google Scholar] [CrossRef]
- Poleshchuk, A.G.; Sedukhin, A.G.; Trunov, V.I.; Maksimov, V.G. Hartmann Wavefront Sensor Based on Multielement Amplitude Masks with Apodized Apertures. Comput. Opt. 2014, 38, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, I. Pyramid phase microscopy. Opt. Lett. 2011, 36, 3636–3638. [Google Scholar] [CrossRef]
- Artal, P. Optics of the eye and its impact in vision: A tutorial. Adv. Opt. Photonics 2014, 6, 340–367. [Google Scholar] [CrossRef] [Green Version]
- Stoklasa, B.; Motka, L.; Rehacek, J.; Hradil, Z.; Sánchez-Soto, L.L. Wavefront sensing reveals optical coherence. Nat. Commun. 2014, 5, 3275. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.W. SLODAR: Measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor. Mon. Not. R. Astron. Soc. 2002, 337, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Dayton, D.; Pierson, B.; Spielbusch, B.; Gonglewski, J. Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor. Opt. Lett. 1992, 17, 1737–1739. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Ren, J.; Tearney, G.J.; Yang, C. Wavefront image sensor chip. Opt. Express 2010, 18, 16685–16701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saita, Y.; Shinto, H.; Nomura, T. Holographic Shack–Hartmann wavefront sensor based on the correlation peak displacement detection method for wavefront sensing with large dynamic range. Optica 2015, 2, 411. [Google Scholar] [CrossRef]
- Kasztelanic, R.; Filipkowski, A.; Pysz, D.; Stepien, R.; Waddie, A.J.; Taghizadeh, M.R.; Buczynski, R. High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses. Opt. Express 2017, 25, 1680–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konwar, S.; Boruah, B.R. Estimation of inter-modal cross talk in a modal wavefront sensor. OSA Contin. 2018, 1, 78–91. [Google Scholar] [CrossRef]
- Anzuola, E.; Zepp, A.; Marin, P.; Gladysz, S.; Stein, K. Imaging and Applied Optics. In Proceedings of the OSA 2016, Heidelberg, Germany, 25–28 July 2016. [Google Scholar]
- Venediktov, V.Y.; Gorelaya, A.V.; Krasin, G.K.; Odinokov, S.B.; Sevryugin, A.A.; Shalymov, E.V. Holographic wavefront sensors. Quantum Electron. 2020, 50, 614–622. [Google Scholar] [CrossRef]
- Kovalev, M.S.; Krasin, G.K.; Odinokov, S.B.; Solomashenko, A.B.; Zlokazov, E.Y. Measurement of wavefront curvature using computer-generated holograms. Opt. Express 2019, 27, 1563–1568. [Google Scholar] [CrossRef]
- Ruchka, P.A.; Verenikina, N.M.; Gritsenko, I.V.; Zlokazov, E.Y.; Kovalev, M.S.; Krasin, G.K.; Odinokov, S.B.; Stsepuro, N.G. Hardware/Software Support for Correlation Detection in Holographic Wavefront Sensors. Opt. Spectrosc. 2019, 127, 618–624. [Google Scholar] [CrossRef]
- Kompanec, I.N.; Andreeva, A.L. Microdisplays in spatial light modulators. Quantum Electron. 2017, 47, 294–302. [Google Scholar] [CrossRef]
- Xin, B.; Claver, C.; Liang, M.; Chandrasekharan, S.; Angeli, G.; Shipsey, I. Curvature wavefront sensing for the large synoptic survey telescope. Appl. Opt. 2015, 54, 9045–9054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lousberg, G.P.; Moreau, V.; Pirnay, O.; Gloesener, P.; Flebus, C. Wavefront curvature sensing in a 2.5 m wide-field telescope: Design, analysis, and implementation for real-time correction of telescope alignment. Opt. Des. Eng. 2015, 9626, 962625. [Google Scholar] [CrossRef]
- Ragazzoni, R. Pupil plane wavefront sensing with an oscillating prism. J. Mod. Opt. 1996, 43, 289–293. [Google Scholar] [CrossRef]
- Popov, N.L.; Artyukov, I.A.; Vinogradov, A.V.; Protopopov, V.V. Wave packet in the phase problem in optics and ptychography. Phys. Usp. 2020, 63, 766–774. [Google Scholar] [CrossRef]
- Teague, M.R. Deterministic phase retrieval: A Green’s function solution. J. Opt. Soc. Am. 1983, 73, 1434–1441. [Google Scholar] [CrossRef]
- Paganin, D.; Nugent, K.A. Noninterferometric Phase Imaging with Partially Coherent Light. Phys. Rev. Lett. 1998, 80, 2586–2589. [Google Scholar] [CrossRef]
- Zuo, C.; Li, J.; Sun, J.; Fan, Y.; Zhang, J.; Lu, L.; Zhang, R.; Wang, B.; Huang, L.; Chen, Q. Transport of intensity equation: A tutorial. Opt. Lasers Eng. 2020, 135, 106187. [Google Scholar] [CrossRef]
- Philip, M.M.; Feshbach, H. Methods of Theoretical Physics; McGraw-Hill: New York, NY, USA, 1953; p. 303, Part I. [Google Scholar]
- Allen, L.; Oxley, M. Phase retrieval from series of images obtained by defocus variation. Opt. Commun. 2001, 199, 65–75. [Google Scholar] [CrossRef]
- Paganin, D. Coherent X-ray Optics; Oxford University Press: New York, NY, USA, 2006; p. 424. [Google Scholar]
- Martinez-Carranza, J.; Falaggis, K.; Kozacki, T.; Kujawinska, M. Effect of imposed boundary conditions on the accuracy of transport of intensity equation based solvers. SPIE Opt. Metrol. 2013, 8789, 87890N. [Google Scholar] [CrossRef]
- Goodman, J.W. Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1968; p. 457. [Google Scholar]
- Driscoll, W.G.; Vaughan, W. Handbook of Optics; McGraw-Hill: New York, NY, USA, 1978; pp. 26–27. [Google Scholar]
- Abdul-Rahman, H.; Gdeisat, M.; Burton, D.; Lalor, M. Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. Opt. Meas. Syst. Ind. Insp. IV 2005, 5856, 32–41. [Google Scholar] [CrossRef]
- Borodinov, A. Development and research of algorithms for determining user preferred public transport stops in a geographic information system based on machine learning methods. Comput. Opt. 2020, 44, 646–652. [Google Scholar] [CrossRef]
- Townson, M.J.; Farley, O.J.D.; De Xivry, G.O.; Osborn, J.; Reeves, A.P. AOtools: A Python package for adaptive optics modelling and analysis. Opt. Express 2019, 27, 31316–31329. [Google Scholar] [CrossRef]
- Chernyshov, A.; Sterr, U.; Riehle, F.; Helmcke, J.; Pfund, J. Calibration of a Shack–Hartmann sensor for absolute measurements of wavefronts. Appl. Opt. 2005, 44, 6419–6425. [Google Scholar] [CrossRef] [PubMed]
- Akondi, V.; Dubra, A. Shack-Hartmann wavefront sensor optical dynamic range. Opt. Express 2021, 29, 8417–8429. [Google Scholar] [CrossRef] [PubMed]
- Krasin, G.; Kovalev, M.; Stsepuro, N.; Ruchka, P.; Odinokov, S. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms. Sensors 2020, 20, 4310. [Google Scholar] [CrossRef]
- Krasin, G.K.; Stsepuro, N.G.; Kovalev, M.S.; Zlokazov, E.Y. Lensless scheme of a holographic wavefront sensor. In Proceedings of the International Conference Laser Optics, St. Petersburg, Russia, 2–6 November 2020. [Google Scholar]
- Evtikhiev, N.N.; Zlokazov, E.Y.; Starikov, R.S.; Starikov, S.N.; Bobrinev, V.I.; Odinokov, S.B. Specificities of data page repre-sentation in projection type optical holographic memory system. Opt. Mem. Neural Netw. 2015, 24, 272–278. [Google Scholar] [CrossRef]
- Haist, T.; Osten, W. Holography using pixelated spatial light modulators—part 1: Theory and basic considerations. J. Micro Nanolithography MEMS MOEMS 2015, 14, 041310. [Google Scholar] [CrossRef]
- Dong, S.; Haist, T.; Osten, W.; Ruppel, T.; Sawodny, O. Response analysis of holography-based modal wavefront sensor. Appl. Opt. 2012, 51, 1318–1327. [Google Scholar] [CrossRef]
- Konwar, S.; Boruah, B.R. Improved linear response in a modal wavefront sensor. J. Opt. Soc. Am. A 2019, 36, 741–750. [Google Scholar] [CrossRef]
- Kodatskiy, B.; Kovalev, M.; Malinina, P.; Odinokov, S.; Soloviev, V.; Venediktov, V. Fourier holography in holographic optical sensors. In Proceedings of the SPIE Remote Sensing, Edinburgh, UK, 28–29 September 2016. [Google Scholar]
- Paganin, D.; Barty, A.; McMahon, P.J.; Nugent, K.A. Quantitative phase-amplitude microscopy. III. The effects of noise. J. Microsc. 2004, 214, 51–61. [Google Scholar] [CrossRef]
- Zhou, H.; Stoykova, E.; Hussain, M.M.R.; Banerjee, P.P. Performance analysis of phase retrieval using transport of intensity with digital holography. Appl. Opt. 2021, 60, A73–A83. [Google Scholar] [CrossRef] [PubMed]
- Gureyev, T.E.; Nugent, K.A. Phase retrieval with the transport-of-intensity equation. II. Orthogonal series solution for nonu-niform illumination. J. Opt. Soc. Am. A 1996, 13, 1670–1682. [Google Scholar] [CrossRef]
Shack–Hartmann Wavefront Sensor | Holographic Wavefront Sensor | Proposed Method | |
---|---|---|---|
Pixel Size, μm | 4.65 | 6.4 | 5.04 |
Aperture Size | 4.76 | 6.91 | 7.56 |
Rmin, mm | 50 | 170 | 40 |
Defocus Measurement Accuracy | 10λ | λ/50 | λ/1.5 |
∆R, μm | 5100 | 63 | 200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gritsenko, I.; Kovalev, M.; Krasin, G.; Konoplyov, M.; Stsepuro, N. Computational Method for Wavefront Sensing Based on Transport-of-Intensity Equation. Photonics 2021, 8, 177. https://doi.org/10.3390/photonics8060177
Gritsenko I, Kovalev M, Krasin G, Konoplyov M, Stsepuro N. Computational Method for Wavefront Sensing Based on Transport-of-Intensity Equation. Photonics. 2021; 8(6):177. https://doi.org/10.3390/photonics8060177
Chicago/Turabian StyleGritsenko, Iliya, Michael Kovalev, George Krasin, Matvey Konoplyov, and Nikita Stsepuro. 2021. "Computational Method for Wavefront Sensing Based on Transport-of-Intensity Equation" Photonics 8, no. 6: 177. https://doi.org/10.3390/photonics8060177
APA StyleGritsenko, I., Kovalev, M., Krasin, G., Konoplyov, M., & Stsepuro, N. (2021). Computational Method for Wavefront Sensing Based on Transport-of-Intensity Equation. Photonics, 8(6), 177. https://doi.org/10.3390/photonics8060177