High Field Single- to Few-Cycle THz Generation with Lithium Niobate
Abstract
:1. Introduction to High Field
2. The Cherenkov Geometry
3. TPF with a Grating
4. Discrete TPF
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leguy, A.M.A.; Goñi, A.R.; Frost, J.M.; Skelton, J.; Brivio, F.; Rodríguez-Martínez, X.; Weber, O.J.; Pallipurath, A.; Alonso, M.I.; Campoy-Quiles, M.; et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 2016, 18, 27051–27066. [Google Scholar] [CrossRef] [Green Version]
- Steinleitner, P.; Merkl, P.; Nagler, P.; Mornhinweg, J.; Schüller, C.; Korn, T.; Chernikov, A.; Huber, R. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Lett. 2017, 17, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- La-o-vorakiat, C.; Salim, T.; Kadro, J.; Khuc, M.-T.; Haselsberger, R.; Cheng, L.; Xia, H.; Gurzadyan, G.G.; Su, H.; Lam, Y.M.; et al. Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films. Nat. Commun. 2015, 6, 7903. [Google Scholar] [CrossRef]
- Yu, S.; Gao, B.; Kim, J.W.; Cheong, S.-W.; Man, M.K.L.; Madéo, J.; Dani, K.M.; Talbayev, D. High-Temperature Terahertz Optical Diode Effect without Magnetic Order in Polar FeZnMo3O8. Phys. Rev. Lett. 2018, 120, 037601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, I.; Aoki, H.; Takeda, J.; Shimosato, H.; Ashida, M.; Kinjo, R.; Kawayama, I.; Tonouchi, M.; Nagai, M.; Tanaka, K. Ferroelectric Soft Mode in a SrTiO3 Thin Film Impulsively Driven to the Anharmonic Regime Using Intense Picosecond Terahertz Pulses. Phys. Rev. Lett. 2012, 108, 097401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozina, M.; Fechner, M.; Marsik, P.; van Driel, T.; Glownia, J.M.; Bernhard, C.; Radovic, M.; Zhu, D.; Bonetti, S.; Staub, U.; et al. Terahertz-driven phonon upconversion in SrTiO3. Nat. Phys 2019, 15, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Qiu, T.; Zhang, J.; Baldini, E.; Lu, J.; Rappe, A.M.; Nelson, K.A. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 2019, 364, 1079–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Vaswani, C.; Sundahl, C.; Mootz, M.; Gagel, P.; Luo, L.; Kang, J.H.; Orth, P.P.; Perakis, I.E.; Eom, C.B.; et al. Terahertz-light quantum tuning of a metastable emergent phase hidden by superconductivity. Nat. Mater. 2018, 17, 586–591. [Google Scholar] [CrossRef]
- Nanni, E.A.; Huang, W.R.; Hong, K.-H.; Ravi, K.; Fallahi, A.; Moriena, G.; Dwayne Miller, R.J.; Kärtner, F.X. Terahertz-driven linear electron acceleration. Nat. Commun. 2015, 6, 8486. [Google Scholar]
- Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S.W.; et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 2014, 8, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Hirori, H.; Shinokita, K.; Shirai, M.; Tani, S.; Kadoya, Y.; Tanaka, K. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nat. Commun. 2011, 2, 594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampfrath, T.; Sell, A.; Klatt, G.; Pashkin, A.; Mährlein, S.; Dekorsy, T.; Wolf, M.; Fiebig, M.; Leitenstorfer, A.; Huber, R. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 2010, 5, 31. [Google Scholar] [CrossRef]
- Cocker, T.L.; Jelic, V.; Gupta, M.; Molesky, S.J.; Burgess, J.A.J.; Reyes, G.D.L.; Titova, L.V.; Tsui, Y.Y.; Freeman, M.R.; Hegmann, F.A. An ultrafast terahertz scanning tunnelling microscope. Nat. Photonics 2013, 7, 620–625. [Google Scholar] [CrossRef]
- Cocker, T.L.; Peller, D.; Yu, P.; Repp, J.; Huber, R. Tracking the ultrafast motion of a single molecule by femtosecond orbital imaging. Nature 2016, 539, 263–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimann, J.; Schlauderer, S.; Schmid, C.P.; Langer, F.; Baierl, S.; Kokh, K.A.; Tereshchenko, O.E.; Kimura, A.; Lange, C.; Güdde, J.; et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band. Nature 2018, 562, 396–400. [Google Scholar] [CrossRef]
- Fleischer, S.; Field, R.W.; Nelson, K.A. Commensurate Two-Quantum Coherences Induced by Time-Delayed THz Fields. Phys. Rev. Lett. 2012, 109, 123603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, K.; Hirori, H.; Aoki, T.; Wolpert, C.; Tamaya, T.; Tanaka, K.; Mochizuki, T.; Kim, C.; Yoshita, M.; Akiyama, H.; et al. Time-resolved observation of coherent excitonic nonlinear response with a table-top narrowband THz pulse wave. Appl. Phys. Lett. 2015, 107, 221106. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, R.; Shimano, R. Nonequilibrium BCS State Dynamics Induced by Intense Terahertz Pulses in a Superconducting NbN Film. Phys. Rev. Lett. 2012, 109, 187002. [Google Scholar] [CrossRef]
- Ropagnol, X.; Khorasaninejadl, M.; Raeiszadeh, M.; Safavi-Naeini, S.; Bouvier, M.; Côté, C.Y.; Laramée, A.; Reid, M.; Gauthier, M.A.; Ozaki, T. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas. Opt. Express 2016, 11, 11299. [Google Scholar] [CrossRef]
- Fülöp, J.A.; Polónyi, G.; Monoszlai, B.; Andriukaitis, G.; Balciunas, T.; Pugzlys, A.; Arthur, G.; Baltuska, A.; Hebling, J. Highly efficient scalable monolithic semiconductor terahertz pulse source. Optica 2016, 3, 1075–1078. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, M.; Hauri, C.P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 2015, 6, 5976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vicario, C.; Jazbinsek, M.; Ovchinnikov, A.V.; Chefonov, O.V.; Ashitkov, S.I.; Agranat, M.B.; Hauri, C.P. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser. Opt. Express 2015, 23, 4573–4580. [Google Scholar] [CrossRef] [Green Version]
- Koulouklidis, A.D.; Gollner, C.; Shumakova, V.; Fedorov, V.Y.; Pugžlys, A.; Baltuška, A.; Tzortzakis, S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 2020, 11, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, T.I.; Yoo, Y.J.; You, Y.S.; Kim, K.Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Appl. Phys. Lett. 2014, 105, 041103. [Google Scholar] [CrossRef]
- Yang, K.H.; Richards, P.L.; Shen, Y.R. Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3. Appl. Phys. Lett. 1971, 19, 320–323. [Google Scholar] [CrossRef] [Green Version]
- Hebling, J.; Almási, G.; Kozma, I.Z.; Kuhl, J. Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express 2002, 10, 1161–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stepanov, A.G.; Hebling, J.; Kuhl, J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts. Appl. Phys. Lett. 2003, 83, 3000–3002. [Google Scholar] [CrossRef]
- Huang, S.-W.; Granados, E.; Huang, W.R.; Hong, K.-H.; Zapata, L.E.; Kärtner, F.X. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 2013, 38, 796–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirori, H.; Doi, A.; Blanchard, F.; Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 2011, 98, 091106. [Google Scholar] [CrossRef]
- Fülöp, J.A.; Ollmann, Z.; Lombosi, C.; Skrobol, C.; Klingebiel, S.; Pálfalvi, L.; Krausz, F.; Karsch, S.; Hebling, J. Efficient generation of THz pulses with 0.4 mJ energy. Opt. Express 2014, 22, 20155–20163. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, Z.; Ma, J.; Wu, X.; Ouyang, C.; Kong, D.; Hong, T.; Wang, X.; Yang, P.; Chen, L.; et al. 1.4-mJ High Energy Terahertz Radiation from Lithium Niobates. Laser Photonics Rev. 2021, 15, 2000295. [Google Scholar] [CrossRef]
- Junginger, F.; Sell, A.; Schubert, O.; Mayer, B.; Brida, D.; Marangoni, M.; Cerullo, G.; Leitenstorfer, A.; Huber, R. Single-cycle multiterahertz transients with peak fields above 10 MV/cm. Opt. Lett. 2010, 35, 2645–2647. [Google Scholar] [CrossRef] [Green Version]
- Seifert, T.; Jaiswal, S.; Sajadi, M.; Jakob, G.; Winnerl, S.; Wolf, M.; Kläui, M.; Kampfrath, T. Ultrabroadband single-cycle terahertz pulses with peak fields of 300 kV cm−1 from a metallic spintronic emitter. Appl. Phys. Lett. 2017, 110, 252402. [Google Scholar] [CrossRef] [Green Version]
- Hebling, J.; Stepanov, A.G.; Almási, G.; Bartal, B.; Kuhl, J. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts. Appl. Phys. B 2004, 78, 593–599. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Kuhl, J.; Kozma, I.Z.; Riedle, E.; Almási, G.; Hebling, J. Scaling up the energy of THz pulses created by optical rectification. Opt. Express 2005, 13, 5762–5768. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.-C.; Li, J.; Zhai, Z.-H.; Zhu, L.-G.; Li, J.; Zhou, P.-W.; Zhao, J.-H.; Li, Z.-R. Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser. Opt. Express 2016, 24, 14828–14835. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-J.; Ma, J.-L.; Zhang, B.-L.; Chai, S.-S.; Fang, Z.-J.; Xia, C.-Y.; Kong, D.-Y.; Wang, J.-G.; Liu, H.; Zhu, C.-Q.; et al. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses. Opt. Express 2018, 26, 7107–7116. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Henin, S.; Petit, Y.; Bonacina, L.; Kasparian, J.; Wolf, J.-P. Mobile source of high-energy single-cycle terahertz pulses. Appl. Phys. B 2010, 101, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Yeh, K.-L.; Hoffmann, M.C.; Hebling, J.; Nelson, K.A. Generation of 10μJ ultrashort terahertz pulses by optical rectification. Appl. Phys. Lett. 2007, 90, 171121. [Google Scholar] [CrossRef]
- Huang, W.R.; Huang, S.-W.; Granados, E.; Ravi, K.; Hong, K.-H.; Zapata, L.E.; Kärtner, F.X. Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate. J. Mod. Opt. 2015, 62, 1486–1493. [Google Scholar] [CrossRef]
- Hebling, J.; Yeh, K.-L.; Hoffmann, M.C.; Bartal, B.; Nelson, K.A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 2008, 25, B6–B19. [Google Scholar] [CrossRef]
- Fulop, J.A.; Palfalvi, L.; Almasi, G.; Hebling, J. Design of high-energy terahertz sources based on optical rectification. Opt Express 2010, 18, 12311–12327. [Google Scholar] [CrossRef]
- Fülöp, J.A.; Pálfalvi, L.; Klingebiel, S.; Almási, G.; Krausz, F.; Karsch, S.; Hebling, J. Generation of sub-mJ terahertz pulses by optical rectification. Opt. Lett. 2012, 37, 557–559. [Google Scholar] [CrossRef]
- Zhong, S.C.; Zhai, Z.H.; Li, J.; Zhu, L.G.; Li, J.; Meng, K.; Liu, Q.; Du, L.H.; Zhao, J.H.; Li, Z.R. Optimization of terahertz generation from LiNbO3 under intense laser excitation with the effect of three-photon absorption. Opt. Express 2015, 23, 31313–31323. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Kitamura, K.; Takekawa, S.; Niwa, K.; Hatano, H. Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics. Opt. Lett. 1998, 23, 1892–1894. [Google Scholar] [PubMed]
- Fontana, M.; Chah, K.; Aillerie, M.; Mouras, R.; Bourson, P. Optical damage resistance in undoped LiNbO3 crystals. Opt. Mater. 2001, 16, 111–117. [Google Scholar] [CrossRef]
- Auston, D.H.; Cheung, K.P.; Valdmanis, J.A.; Kleinman, D.A. Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media. Phys. Rev. Lett. 1984, 53, 1555–1558. [Google Scholar] [CrossRef]
- Theuer, M.; Torosyan, G.; Rau, C.; Beigang, R.; Maki, K.; Otani, C.; Kawase, K. Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler. Appl. Phys. Lett. 2006, 88, 071122. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Hebling, J.; Kuhl, J. THz generation via optical rectification with ultrashort laser pulse focused to a line. Appl. Phys. B 2005, 81, 23–26. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Mashkovich, E.A.; Tsarev, M.V.; Gorelov, S.D. Efficient Cherenkov-type terahertz generation in Si-prism-LiNbO3-slab structure pumped by nanojoule-level ultrashort laser pulses. Appl. Phys. Lett. 2012, 101, 151102. [Google Scholar] [CrossRef]
- Carnio, B.N.; Shahriar, B.; Hopmann, E.; Elezzabi, A.Y. Excitation mode-dependent terahertz radiation generation from a sub-wavelength Si-SiO2-LiNbO3-polymer-Si planar waveguide. IEEE Trans. Terahertz. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Suizu, K.; Koketsu, K.; Shibuya, T.; Tsutsui, T.; Akiba, T.; Kawase, K. Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation. Opt. Express 2009, 17, 6676–6681. [Google Scholar] [CrossRef]
- Bodrov, S.B.; Stepanov, A.N.; Bakunov, M.I.; Shishkin, B.V.; Ilyakov, I.E.; Akhmedzhanov, R.A. Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core. Opt. Express 2009, 17, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Bodrov, S.B.; Bakunov, M.I.; Hangyo, M. Efficient Cherenkov emission of broadband terahertz radiation from an ultrashort laser pulse in a sandwich structure with nonlinear core. J. Appl. Phys. 2008, 104, 093105. [Google Scholar] [CrossRef]
- Bodrov, S.B.; Ilyakov, I.E.; Shishkin, B.V.; Stepanov, A.N. Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap. Appl. Phys. Lett. 2012, 100, 201114. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Bodrov, S.B. Si–LiNbO3–air–metal structure for concentrated terahertz emission from ultrashort laser pulses. Appl. Phys. B 2010, 98, 1–4. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Efimenko, E.S.; Gorelov, S.D.; Abramovsky, N.A.; Bodrov, S.B. Efficient Cherenkov-type optical-to-terahertz converter with terahertz beam combining. Opt. Lett. 2020, 45, 3533–3536. [Google Scholar] [CrossRef]
- Bodrov, S.B.; Ilyakov, I.E.; Shishkin, B.V.; Bakunov, M.I. Highly efficient Cherenkov-type terahertz generation by 2µm wavelength ultrashort laser pulses in a prism-coupled LiNbO3 layer. Opt. Express 2019, 27, 36059–36065. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, X.C.; Auston, D.H. Terahertz beam generation by femtosecond optical pulses in electro-optic materials. Appl. Phys. Lett. 1992, 61, 1784–1786. [Google Scholar] [CrossRef]
- Hebling, J. Derivation of the pulse front tilt caused by angular dispersion. Opt. Quantum Electron. 1996, 28, 1759–1763. [Google Scholar] [CrossRef]
- Stepanov, A.G.; Bonacina, L.; Chekalin, S.V.; Wolf, J.-P. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification. Opt. Lett. 2008, 33, 2497–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunitski, M.; Richter, M.; Thomson, M.D.; Vredenborg, A.; Wu, J.; Jahnke, T.; Schöffler, M.; Schmidt-Böcking, H.; Roskos, H.G.; Dörner, R. Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses. Opt. Express 2013, 21, 6826–6836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pálfalvi, L.; Fülöp, J.A.; Almási, G.; Hebling, J. Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification. Appl. Phys. Lett. 2008, 92, 171107. [Google Scholar] [CrossRef]
- Ollmann, Z.; Hebling, J.; Almási, G. Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification. Appl. Phys. B 2012, 108, 821–826. [Google Scholar] [CrossRef]
- Tsubouchi, M.; Nagashima, K.; Yoshida, F.; Ochi, Y.; Maruyama, M. Contact grating device with Fabry-Perot resonator for effective terahertz light generation. Opt. Lett. 2014, 39, 5439–5442. [Google Scholar] [CrossRef]
- Tóth, G.; Pálfalvi, L.; Tibai, Z.; Tokodi, L.; Fülöp, J.A.; Márton, Z.; Almási, G.; Hebling, J. Single-cycle scalable terahertz pulse source in reflection geometry. Opt. Express 2019, 27, 30681–30691. [Google Scholar] [CrossRef]
- Krizsán, G.; Tibai, Z.; Hebling, J.; Pálfalvi, L.; Almási, G.; Tóth, G. Lithium niobate and lithium tantalate based scalable terahertz pulse sources in reflection geometry. Opt. Express 2020, 28, 34320–34327. [Google Scholar] [CrossRef]
- Blanchard, F.; Ropagnol, X.; Hafez, H.; Razavipour, H.; Bolduc, M.; Morandotti, R.; Ozaki, T.; Cooke, D.G. Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies. Opt. Lett. 2014, 39, 4333–4336. [Google Scholar] [CrossRef]
- Nagai, M.; Jewariya, M.; Ichikawa, Y.; Ohtake, H.; Sugiura, T.; Uehara, Y.; Tanaka, K. Broadband and high power terahertz pulse generation beyond excitation bandwidth limitation via χ(2) cascaded processes in LiNbO3. Opt. Express 2009, 17, 11543–11549. [Google Scholar] [CrossRef]
- Bodrov, S.B.; Murzanev, A.A.; Sergeev, Y.A.; Malkov, Y.A.; Stepanov, A.N. Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes. Appl. Phys. Lett. 2013, 103, 251103. [Google Scholar] [CrossRef]
- Jewariya, M.; Nagai, M.; Tanaka, K. Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3. JOSA B 2009, 26, A101–A106. [Google Scholar] [CrossRef]
- Cronin-Golomb, M. Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production. Opt. Lett. 2004, 29, 2046–2048. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Huang, W.R.; Carbajo, S.; Wu, X.; Kärtner, F. Limitations to THz generation by optical rectification using tilted pulse fronts. Opt. Express 2014, 22, 20239–20251. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, J.A.; Pálfalvi, L.; Hoffmann, M.C.; Hebling, J. Towards generation of mJ-level ultrashort THz pulses by optical rectification. Opt. Express 2011, 19, 15090–15097. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Ofori-Okai, B.K.; Nelson, K.A.; Kartner, F.X. Analysis of terahertz generation by beamlet superposition. Opt. Express 2019, 27, 26547–26568. [Google Scholar] [CrossRef]
- Ofori-Okai, B.K.; Sivarajah, P.; Ronny Huang, W.; Nelson, K.A. THz generation using a reflective stair-step echelon. Opt. Express 2016, 24, 5057–5068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murate, K.; Roshtkhari, M.J.; Ropagnol, X.; Blanchard, F. Adaptive spatiotemporal optical pulse front tilt using a digital micromirror device and its terahertz application. Opt. Lett. 2018, 43, 2090–2093. [Google Scholar] [CrossRef] [PubMed]
- Pálfalvi, L.; Ollmann, Z.; Tokodi, L.; Hebling, J. Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses. Opt. Express 2016, 24, 8156–8169. [Google Scholar] [CrossRef]
- Pálfalvi, L.; Tóth, G.; Tokodi, L.; Márton, Z.; Fülöp, J.A.; Almási, G.; Hebling, J. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation. Opt. Express 2017, 25, 29560–29573. [Google Scholar] [CrossRef] [PubMed]
- Nugraha, P.S.; Krizsán, G.; Lombosi, C.; Pálfalvi, L.; Tóth, G.; Almási, G.; Fülöp, J.A.; Hebling, J. Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source. Opt. Lett. 2019, 44, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Pálfalvi, L.; Fülöp, J.A.; Krizsán, G.; Matlis, N.H.; Almási, G.; Hebling, J. Numerical investigation of imaging-free terahertz generation setup using segmented tilted-pulse-front excitation. Opt. Express 2019, 27, 7762–7775. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Toth, G.; Hebling, J.; Kartner, F. Tilted-Pulse-Front Schemes for Terahertz Generation. Laser Photonics Rev. 2020, 14, 2000021. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Maslov, A.V.; Tsarev, M.V. Optically generated terahertz pulses with strong quasistatic precursors. Phys. Rev. A 2017, 95, 063817. [Google Scholar] [CrossRef]
- Tsarev, M.V.; Bakunov, M.I. Tilted-pulse-front excitation of strong quasistatic precursors. Opt. Express 2019, 27, 5154–5164. [Google Scholar] [CrossRef] [PubMed]
Techniques | Advantages | Disadvantages | Refs | ||
---|---|---|---|---|---|
Cherenkov geometry | Point/line focusing |
|
| [48,49,50,51,52,53,54,55,56,57,58,59] | |
Tilted pulse front (TPF) | Continuous TPF | Grating-telescope |
|
| [26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,43,44,68,69,70,71,72,73,74] |
Contact grating |
|
| [63,64,65,66,67] | ||
Discrete TPF |
|
| [75,76,77] | ||
Hybrid type |
|
| [78,79,80,81,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Bacon, D.R.; Madéo, J.; Dani, K.M. High Field Single- to Few-Cycle THz Generation with Lithium Niobate. Photonics 2021, 8, 183. https://doi.org/10.3390/photonics8060183
Zhu X, Bacon DR, Madéo J, Dani KM. High Field Single- to Few-Cycle THz Generation with Lithium Niobate. Photonics. 2021; 8(6):183. https://doi.org/10.3390/photonics8060183
Chicago/Turabian StyleZhu, Xing, David R. Bacon, Julien Madéo, and Keshav M. Dani. 2021. "High Field Single- to Few-Cycle THz Generation with Lithium Niobate" Photonics 8, no. 6: 183. https://doi.org/10.3390/photonics8060183
APA StyleZhu, X., Bacon, D. R., Madéo, J., & Dani, K. M. (2021). High Field Single- to Few-Cycle THz Generation with Lithium Niobate. Photonics, 8(6), 183. https://doi.org/10.3390/photonics8060183