Low-Frequency Content of THz Emission from Two-Color Femtosecond Filament
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of EOS Sensitivity
References
- Cook, D.; Hochstrasser, R. Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 2000, 25, 1210–1212. [Google Scholar] [CrossRef] [PubMed]
- Kasparian, J.; Sauerbrey, R.; Chin, S.L. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 2000, 71, 877. [Google Scholar] [CrossRef]
- Kosareva, O.G.; Liu, W.; Panov, N.A.; Bernhardt, J.; Ji, Z.; Sharifi, M.; Li, R.; Xu, Z.; Liu, J.; Wang, Z.; et al. Can we reach very high intensity in air with femtosecond PW laser pulses? Laser Phys. 2009, 19, 1776–1792. [Google Scholar] [CrossRef]
- Mitryukovskiy, S.I.; Liu, Y.; Houard, A.; Mysyrowicz, A. Re-evaluation of the peak intensity inside a femtosecond laser filament in air. J. Phys. B 2015, 48, 094003. [Google Scholar] [CrossRef]
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Squier, J.; Mourou, G. Self-channeling of high-peak-power femtosecond laser-pulses in air. Opt. Lett. 1995, 20, 73. [Google Scholar] [CrossRef]
- Pushkarev, D.; Mitina, E.; Shipilo, D.; Panov, N.; Uryupina, D.; Ushakov, A.; Volkov, R.; Karabutov, A.; Babushkin, I.; Demircan, A.; et al. Transverse structure and energy deposition by a subTW femtosecond laser in air: From single filament to superfilament. New J. Phys. 2019, 21, 033027. [Google Scholar] [CrossRef]
- Apeksimov, D.; Bukin, O.; Bykova, E.; Geints, Y.E.; Golik, S.; Zemlyanov, A.; Il’in, A.; Kabanov, A.; Matvienko, G.; Oshlakov, V.; et al. Filamentation of the focused Ti: Sapphire laser pulse in air at two harmonics. Plasma Phys. Rep. 2013, 39, 1074–1081. [Google Scholar] [CrossRef]
- Théberge, F.; Liu, W.; Simard, P.T.; Becker, A.; Chin, S.L. Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing. Phys. Rev. E 2006, 74, 036406. [Google Scholar] [CrossRef] [Green Version]
- Ionin, A.A.; Kudryashov, S.I.; Seleznev, L.V.; Sinitsyn, D.V. Tunneling Ionization of Air in the Strong Field of Femtosecond Laser Pulses. JETP Lett. 2009, 90, 181–185. [Google Scholar] [CrossRef]
- Fuji, T.; Suzuki, T. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air. Opt. Lett. 2007, 32, 3330–3332. [Google Scholar] [CrossRef]
- Thomson, M.D.; Blank, V.; Roskos, H.G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Opt. Express 2010, 18, 23173–23182. [Google Scholar] [CrossRef]
- Matsubara, E.; Nagai, M.; Ashida, M. Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses. J. Opt. Soc. Am. B 2013, 30, 1627–1630. [Google Scholar] [CrossRef]
- Borodin, A.V.; Panov, N.A.; Kosareva, O.G.; Andreeva, V.A.; Esaulkov, M.N.; Makarov, V.A.; Shkurinov, A.P.; Chin, S.L.; Zhang, X.C. Transformation of terahertz spectra emitted from dual-frequency femtosecond pulse interaction in gases. Opt. Lett. 2013, 38, 1906. [Google Scholar] [CrossRef]
- Oh, T.; You, Y.; Jhajj, N.; Rosenthal, E.; Milchberg, H.; Kim, K.Y. Intense terahertz generation in two-color laser filamentation: Energy scaling with terawatt laser systems. New J. Phys. 2013, 15, 075002. [Google Scholar] [CrossRef]
- Gorodetsky, A.; Koulouklidis, A.D.; Massaouti, M.; Tzortzakis, S. Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. A 2014, 89, 033838. [Google Scholar] [CrossRef]
- Andreeva, V.; Kosareva, O.; Panov, N.; Shipilo, D.; Solyankin, P.; Esaulkov, M.; de Alaiza Martínez, P.G.; Shkurinov, A.; Makarov, V.; Bergé, L.; et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma. Phys. Rev. Lett. 2016, 116, 063902. [Google Scholar] [CrossRef]
- Fedorov, V.Y.; Tzortzakis, S. Extreme THz fields from two-color filamentation of midinfrared laser pulses. Phys. Rev. A 2018, 97, 063842. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Oh, T.; Kim, K. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Phys. Rev. Lett. 2012, 109, 183902. [Google Scholar] [CrossRef] [Green Version]
- Borodin, A.V.; Esaulkov, M.N.; Kuritsyn, I.I.; Kotelnikov, I.A.; Shkurinov, A.P. On the role of photoionization in generation of terahertz radiation in the plasma of optical breakdown. JOSA B 2012, 29, 1911–1919. [Google Scholar] [CrossRef]
- Blank, V.; Thomson, M.; Roskos, H. Spatio-spectral characteristics of ultra-broadband THz emission from two-colour photoexcited gas plasmas and their impact for nonlinear spectroscopy. New J. Phys. 2013, 15, 075023. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.; Jepsen, P.; Zhou, B. Accurately frequency-resolved air-plasma THz beam profile from knifeedge assisted waveform measurements. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 16–17 August 2021. [Google Scholar]
- Sørensen, C.B.; Guiramand, L.; Degert, J.; Tondusson, M.; Skovsen, E.; Freysz, E.; Abraham, E. Conical versus Gaussian terahertz emission from two-color laser-induced air plasma filaments. Opt. Lett. 2020, 45, 2132–2135. [Google Scholar] [CrossRef]
- Ushakov, A.; Chizhov, P.; Andreeva, V.; Panov, N.; Shipilo, D.; Matoba, M.; Nemoto, N.; Kanda, N.; Konishi, K.; Bukin, V.; et al. Ring and unimodal angular-frequency distribution of THz emission from two-color femtosecond plasma spark. Opt. Express 2018, 26, 18202–18213. [Google Scholar] [CrossRef]
- Zhong, H.; Karpowicz, N.; Zhang, X.C. Terahertz emission profile from laser-induced air plasma. Appl. Phys. Lett. 2006, 88, 261103. [Google Scholar] [CrossRef]
- Ushakov, A.; Chizhov, P.; Bukin, V.; Shipilo, D.; Panov, N.; Kosareva, O.; Garnov, S. Multiple Filamentation Effects on THz Radiation Pattern from Laser Plasma in Air. Photonics 2021, 8, 4. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Sun, W.; Wang, X.; Feng, S.; Ye, J.; Zhang, Y. Contribution of the optical rectification in terahertz radiation driven by two-color laser induced plasma. Opt. Express 2020, 28, 4810–4816. [Google Scholar] [CrossRef]
- Smirnov, S.V.; Kulya, M.S.; Tcypkin, A.N.; Putilin, S.E.; Bespalov, V.G. Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation. Nanosyst.-Phys. Chem. Math. 2017, 8, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Hah, J.; Jiang, W.; He, Z.; Nees, J.; Hou, B.; Thomas, A.; Krushelnick, K. Enhancement of THz generation by feedback-optimized wavefront manipulation. Opt. Express 2017, 25, 17271–17279. [Google Scholar] [CrossRef]
- Kolesik, M.; Moloney, J.V. Nonlinear optical pulse propagation simulation: From Maxwell’s to unidirectional equations. Phys. Rev. E 2004, 70, 036604. [Google Scholar] [CrossRef]
- Ho, I.C.; Guo, X.; Zhang, X.C. Design and performance of reflective terahertz air-biased-coherent-detection for time-domain spectroscopy. Opt. Express 2010, 18, 2872–2883. [Google Scholar] [CrossRef]
- Dai, J.; Clough, B.; Ho, I.C.; Lu, X.; Liu, J.; Zhang, X.C. Recent progresses in terahertz wave air photonics. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 274–281. [Google Scholar] [CrossRef]
- Xie, J.; Fan, W.H.; Chen, X. Systematic experimental study on a highly efficient terahertz source based on two-color laser-induced air plasma. Laser Phys. 2016, 26, 055002. [Google Scholar] [CrossRef]
- Koulouklidis, A.; Fedorov, V.Y.; Tzortzakis, S. Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments. Phys. Rev. A 2016, 93, 033844. [Google Scholar] [CrossRef]
- Rodriguez, G.; Dakovski, G.L. Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: Energy and pressure dependence. Opt. Express 2010, 18, 15130–15143. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Chu, W.; Wang, Z.; Peng, Y.; Gong, C.; Lin, L.; Zhu, Y.; Liu, W.; Cheng, Y.; Zhuang, S.; et al. Strong spatial confinement of terahertz wave inside femtosecond laser filament. ACS Photonics 2016, 3, 2338–2343. [Google Scholar] [CrossRef]
- Chen, Y.; Marceau, C.; Génier, S.; Théberge, F.; Châteauneuf, M.; Dubois, J.; Chin, S.L. Elliptically polarized Terahertz emission through four-wave mixing in a two-color filament in air. Opt. Commun. 2009, 282, 4283–4287. [Google Scholar] [CrossRef]
- Akhmedzhanov, R.; Ilyakov, I.; Mironov, V.; Suvorov, E.; Fadeev, D.; Shishkin, B. Plasma mechanisms of pulsed terahertz radiation generation. Radiophys. Quantum Electron. 2009, 52, 482–493. [Google Scholar] [CrossRef]
- Wang, T.J.; Marceau, C.; Chen, Y.; Yuan, S.; Théberge, F.; Châteauneuf, M.; Dubois, J.; Chin, S.L. Terahertz emission from a dc-biased two-color femtosecond laser-induced filament in air. Appl. Phys. Lett. 2010, 96, 211113. [Google Scholar] [CrossRef]
- Zhang, X.C.; Xu, J. Introduction to THz Wave Photonics; Springer: New York, NY, USA, 2010; Volume 29. [Google Scholar]
- Dai, J.; Xie, X.; Zhang, X.C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 2006, 97, 103903. [Google Scholar] [CrossRef]
- Lu, Z.; Campbell, P.; Zhang, X.C. Free-space electro-optic sampling with a high-repetition-rate regenerative amplified laser. Appl. Phys. Lett. 1997, 71, 593–595. [Google Scholar] [CrossRef]
- Ushakov, A.; Panov, N.; Chizhov, P.; Shipilo, D.; Bukin, V.; Savel’ev, A.; Garnov, S.; Kosareva, O. Waveform, spectrum, and energy of backward terahertz emission from two-color femtosecond laser induced microplasma. Appl. Phys. Lett. 2019, 114, 081102. [Google Scholar] [CrossRef]
- Shipilo, D.; Nikolaeva, I.; Pushkarev, D.; Rizaev, G.; Mokrousova, D.; Koribut, A.; Grudtsyn, Y.; Panov, N.A.; Seleznev, L.; Liu, W.; et al. Balance of emission from THz sources in DC-biased and unbiased filaments in air. Opt. Express 2021, 29, 40687–40698. [Google Scholar] [CrossRef]
- Baxter, J.B.; Guglietta, G.W. Terahertz spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.C. Design and characterization of traveling-wave electrooptic terahertz sensors. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 693–700. [Google Scholar]
- Zhong, H.; Redo, A.; Chen, Y.; Zhang, X.C. THz wave standoff detection of explosive materials. In Proceedings of the Terahertz for Military and Security Applications IV, Orlando, FL, USA, 19 May 2006; SPIE, the International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6212, p. 62120L. [Google Scholar]
- Usami, M.; Yamashita, M.; Fukushima, K.; Otani, C.; Kawase, K. Terahertz wideband spectroscopic imaging based on two-dimensional electro-optic sampling technique. Appl. Phys. Lett. 2005, 86, 141109. [Google Scholar] [CrossRef]
- Mankova, A.; Borodin, A.; Kargovsky, A.; Brandt, N.; Luo, Q.; Sakodynskaya, I.; Wang, K.; Zhao, H.; Chikishev, A.Y.; Shkurinov, A.; et al. Terahertz time-domain and FTIR spectroscopic study of interaction of α-chymotrypsin and protonated tris with 18-crown-6. Chem. Phys. Lett. 2013, 560, 55–59. [Google Scholar] [CrossRef]
- Bergé, L.; Kaltenecker, K.; Engelbrecht, S.; Nguyen, A.; Skupin, S.; Merlat, L.; Fischer, B.; Zhou, B.; Thiele, I.; Jepsen, P.U. Terahertz spectroscopy from air plasmas created by two-color femtosecond laser pulses: The ALTESSE project. EPL (Europhys. Lett.) 2019, 126, 24001. [Google Scholar] [CrossRef] [Green Version]
- THz Band Pass Filters. Available online: www.tydexoptics.com/products/thz_assemblies/thz_band_pass_filter/ (accessed on 22 July 2021).
- Nikolaeva, I.; Shipilo, D.; Pushkarev, D.; Rizaev, G.; Mokrousova, D.; Koribut, A.; Grudtsyn, Y.; Panov, N.; Seleznev, L.; Liu, W.; et al. Flat-top THz directional diagram of a DC-biased filament. Opt. Lett. 2021, 46, 5497–5500. [Google Scholar] [CrossRef]
- Hansen, R.C. Phased Array Antennas; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 213. [Google Scholar]
- D’Amico, C.; Houard, A.; Franco, M.; Prade, B.; Mysyrowicz, A.; Couairon, A.; Tikhonchuk, V. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Phys. Rev. Lett. 2007, 98, 235002. [Google Scholar] [CrossRef] [Green Version]
- D’Amico, C.; Houard, A.; Akturk, S.; Liu, Y.; Le Bloas, J.; Franco, M.; Prade, B.; Couairon, A.; Tikhonchuk, V.; Mysyrowicz, A. Forward THz radiation emission by femtosecond filamentation in gases: Theory and experiment. New J. Phys. 2008, 10, 013015. [Google Scholar]
- Panov, N.A.; Kosareva, O.G.; Andreeva, V.; Savel’ev, A.; Uryupina, D.S.; Volkov, R.V.; Makarov, V.; Shkurinov, A.P. Angular distribution of the terahertz radiation intensity from the plasma channel of a femtosecond filament. JETP Lett. 2011, 93, 638. [Google Scholar] [CrossRef]
- Orlova, E.; Hovenier, J.; Klaassen, T.; Kašalynas, I.; Adam, A.; Gao, J.; Klapwijk, T.; Williams, B.; Kumar, S.; Hu, Q.; et al. Antenna model for wire lasers. Phys. Rev. Lett. 2006, 96, 173904. [Google Scholar] [CrossRef] [PubMed]
- Klarskov, P.; Strikwerda, A.C.; Iwaszczuk, K.; Jepsen, P.U. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma. New J. Phys. 2013, 15, 075012. [Google Scholar] [CrossRef] [Green Version]
- Panov, N.; Andreeva, V.; Kosareva, O.; Shkurinov, A.; Makarov, V.; Bergé, L.; Chin, S. Directionality of terahertz radiation emitted from an array of femtosecond filaments in gases. Laser Phys. Lett. 2014, 11, 125401. [Google Scholar] [CrossRef]
- Gallot, G.; Zhang, J.; McGowan, R.; Jeon, T.I.; Grischkowsky, D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Appl. Phys. Lett. 1999, 74, 3450–3452. [Google Scholar] [CrossRef] [Green Version]
- Varga, P.; Török, P. Focusing of electromagnetic waves by paraboloid mirrors. I. Theory. J. Opt. Soc. Am. A 2000, 17, 2081–2089. [Google Scholar] [CrossRef]
- Ahi, K. Mathematical modeling of THz point spread function and simulation of THz imaging systems. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 747–754. [Google Scholar] [CrossRef]
Pulse Duration, fs | Pulse Energy, mJ | Focusing Conditions | Detection Method | , THz | Ref. |
---|---|---|---|---|---|
32 | ∼1 | cm | EOS | 2.9 | [13] |
32 | 0.7 | cm | ABCD | 4.4 | [30] |
32 | 0.7 | — | ABCD | ∼5 | [31] |
35 | 2 | cm | EOS | 0.4 | [27] |
35 | ∼3 | Interferometer | 13 | [28] | |
40 | 0.7–2 | –25 cm | EOS | ∼1 | [32] |
40 | ∼1 | cm | EOS | 2.3 | [13] |
40 | 2.3 | cm | EOS (ZnTe) EOS (GaP) ABCD Interferometer | 1.7 2.2 3.4 7 | [33] |
40 | 1–6 | Interferometer | 5–10 | [34] | |
50 | 0.5 | cm | EOS | 0.4 | [35] |
50 | 1.15 | EOS | ∼0.5 | [36] | |
50 | 2.5 | – | EOS | 0.5–0.7 | [37] |
50 | 1.7 | cm | EOS | ∼1 | [38] |
50 | ∼1 | — | ABCD EOS | 0.55 1.7 | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shipilo, D.E.; Panov, N.A.; Nikolaeva, I.A.; Ushakov, A.A.; Chizhov, P.A.; Mamaeva, K.A.; Bukin, V.V.; Garnov, S.V.; Kosareva, O.G. Low-Frequency Content of THz Emission from Two-Color Femtosecond Filament. Photonics 2022, 9, 17. https://doi.org/10.3390/photonics9010017
Shipilo DE, Panov NA, Nikolaeva IA, Ushakov AA, Chizhov PA, Mamaeva KA, Bukin VV, Garnov SV, Kosareva OG. Low-Frequency Content of THz Emission from Two-Color Femtosecond Filament. Photonics. 2022; 9(1):17. https://doi.org/10.3390/photonics9010017
Chicago/Turabian StyleShipilo, Daniil E., Nikolay A. Panov, Irina A. Nikolaeva, Alexander A. Ushakov, Pavel A. Chizhov, Kseniia A. Mamaeva, Vladimir V. Bukin, Sergey V. Garnov, and Olga G. Kosareva. 2022. "Low-Frequency Content of THz Emission from Two-Color Femtosecond Filament" Photonics 9, no. 1: 17. https://doi.org/10.3390/photonics9010017
APA StyleShipilo, D. E., Panov, N. A., Nikolaeva, I. A., Ushakov, A. A., Chizhov, P. A., Mamaeva, K. A., Bukin, V. V., Garnov, S. V., & Kosareva, O. G. (2022). Low-Frequency Content of THz Emission from Two-Color Femtosecond Filament. Photonics, 9(1), 17. https://doi.org/10.3390/photonics9010017