A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine
Abstract
:1. Introduction
2. Terahertz Chemical Microscope
3. A versatile TCM for Biological Substances Detection
3.1. pH and Ion Measurement
3.2. Lectin–Sugar/Sugar Chain Interactions and Antibody–Antigen Immunoassay
3.3. Detection of Cancer Cells
3.4. Detection of Histamine Released from Allergic Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- Auston, D.H.; Glass, A.M. Optical Generation of Intense Picosecond Electrical Pulses. IEEE J. Quantum Electron. 1972, 8, 541. [Google Scholar] [CrossRef]
- van Exter, M.; Fattinger, C.; Grischkowsky, D. Terahertz time-domain spectroscopy of water vapor. Opt. Lett. 1989, 14, 1128–1130. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Jepsen, P.U.; Cooke, D.G.; Koch, M. Terahertz spectroscopy and imaging—Modern techniques and applications. Laser Photonics Rev. 2011, 5, 124–166. [Google Scholar] [CrossRef]
- Fischer, B.M.; Walther, M.; Jepsen, P.U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy. Phys. Med. Biol. 2002, 47, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Rønne, C.; Åstrand, P.O.; Keiding, S.R. THz spectroscopy of liquid H2O and D2O. Phys. Rev. Lett. 1999, 82, 2888–2891. [Google Scholar] [CrossRef]
- Globus, T.R.; Woolard, D.L.; Khromova, T.; Crowe, T.W.; Bykhovskaia, M.; Gelmont, B.L.; Hesler, J.; Samuels, A.C. THz-spectroscopy of biological molecules. J. Biol. Phys. 2003, 29, 89–100. [Google Scholar] [CrossRef]
- Baxter, J.B.; Guglietta, G.W. Terahertz spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef]
- Yoshida, H.; Ogawa, Y.; Kawai, Y.; Hayashi, S.; Hayashi, A.; Otani, C.; Kato, E.; Miyamaru, F.; Kawase, K. Terahertz sensing method for protein detection using a thin metallic mesh. Appl. Phys. Lett. 2007, 91, 1–4. [Google Scholar] [CrossRef]
- Murakami, H.; Uchida, N.; Inoue, R.; Kim, S.; Kiwa, T.; Tonouchi, M. Laser Terahertz Emission Microscope. Proc. IEEE 2007, 95, 1646–1657. [Google Scholar] [CrossRef]
- Kiwa, T.; Oka, S.; Kondo, J.; Kawayama, I.; Yamada, H.; Tonouchi, M.; Tsukada, K. A terahertz chemical microscope to visualize chemical concentrations in microfluidic chips. Jpn. J. Appl. Phys. Part 2 Lett. 2007, 46, 8–11. [Google Scholar] [CrossRef]
- Tonouchi, M.; Kim, S.; Kawayama, I.; Murakami, H. Laser terahertz emission microscope. Terahertz Phys. Devices Syst. V: Adv. Appl. Ind. Def. 2011, 80230Q. [Google Scholar] [CrossRef]
- Kiwa, T.; Tsukada, K.; Suzuki, M.; Tonouchi, M.; Migitaka, S.; Yokosawa, K. Laser terahertz emission system to investigate hydrogen gas sensors. Appl. Phys. Lett. 2005, 86, 1–3. [Google Scholar] [CrossRef]
- Yamashita, M.; Kawase, K.; Otani, C.; Kiwa, T.; Tonouchi, M. Imaging of large-scale integrated circuits using laser terahertz emission microscopy. Opt. Express 2005, 13, 115–120. [Google Scholar] [CrossRef]
- Klarskov, P.; Kim, H.; Colvin, V.L.; Mittleman, D.M. Nanoscale Laser Terahertz Emission Microscopy. ACS Photonics 2017, 4, 2676–2680. [Google Scholar] [CrossRef]
- Pizzuto, A.; Mittleman, D.M.; Klarskov, P. Nanoscale Laser Terahertz Emission Microscopy and THz Nanoscopy. In Proceedings of the 2020 Conference on Lasers and Electro-Optics (Optical Society of America), San Jose, CA, USA, 10–15 May 2020; pp. 1–2. [Google Scholar]
- Kiwa, T.; Sakai, K.; Tsukada, K. Imaging chemical reactions. SPIE Newsroom 2013, 2–5. [Google Scholar] [CrossRef]
- Kiwa, T.; Sakai, K.; Tsukada, K. Stabilization method for signal drifts in terahertz chemical microscopy. Opt. Express 2014, 22, 1330. [Google Scholar] [CrossRef] [PubMed]
- Kiwa, T.; Kondo, J.; Oka, S.; Kawayama, I.; Yamada, H.; Tonouchi, M.; Tsukada, K. Chemical sensing plate with a laser-terahertz monitoring system. Appl. Opt. 2008, 47, 3324–3327. [Google Scholar] [CrossRef]
- Kiwa, T.; Kamiya, T.; Iida, M.; Inoue, H.; Sakai, K.; Toyooka, S.; Tsukada, K. Evaluation of Bio-materials Using a Laser-excited Terahertz Wave. Nippon Laser Igakkaishi 2019, 39, 341–346. [Google Scholar] [CrossRef]
- Kiwa, T.; Kamiya, T.; Morimoto, T.; Fujiwara, K.; Maeno, Y.; Akiwa, Y.; Iida, M.; Kuroda, T.; Sakai, K.; Nose, H.; et al. Imaging of chemical reactions using a terahertz chemical microscope. Photonics 2019, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Kiwa, T.; Hagiwara, T.; Shinomiya, M.; Sakai, K.; Tsukada, K. Work function shifts of catalytic metals under hydrogen gas visualized by terahertz chemical microscopy. Opt. Express 2012, 20, 11637. [Google Scholar] [CrossRef]
- Kuwana, T.; Ogawa, M.; Sakai, K.; Kiwa, T.; Tsukada, K. Label-free detection of low-molecular-weight samples using a terahertz chemical microscope. Appl. Phys. Express 2016, 9, 042401. [Google Scholar] [CrossRef] [Green Version]
- Akimune, K.; Okawa, Y.; Sakai, K.; Kiwa, T.; Tsukada, K. Multi-ion sensing of buffer solutions using terahertz chemical microscopy. Appl. Phys. Express 2014, 7, 122401. [Google Scholar] [CrossRef]
- Kiwa, T.; Kondo, Y.; Minami, Y.; Kawayama, I.; Tonouchi, M.; Tsukada, K. Terahertz chemical microscope for label-free detection of protein complex. Appl. Phys. Lett. 2010, 96, 1–4. [Google Scholar] [CrossRef]
- Taniizumi, K.; Nagata, H.; Ando, M.; Mahana, A.; Wang, J.; Sakai, K.; Kiwa, T. Development of Ion Concentration Measurement Method for Minute Volume of Blood Using Terahertz Chemical Microscope. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar]
- Kiwa, T.; Kamiya, T.; Morimoto, T.; Sakai, K.; Tsukada, K. pH measurements in 16-nL-volume solutions using terahertz chemical microscopy. Opt. Express 2018, 26, 8232. [Google Scholar] [CrossRef]
- Ahmed, F.; Mahana, A.; Taniizumi, K.; Wang, J.; Sakai, K.; Kiwa, T. Terahertz imaging technique for monitoring the flow of buffer solutions at different pH values through a microfluidic chip. Jpn. J. Appl. Phys. 2021, 60, 027003. [Google Scholar] [CrossRef]
- Wang, J.; Nagata, H.; Ando, M.; Yoshida, Y.; Sakai, K.; Kiwa, T. Visualization of Charge-Transfer Complex for the Detection of 2, 4, 6-Trinitrotoluene Using Terahertz Chemical Microscope. J. Electrochem. Soc. 2021, 168, 11. [Google Scholar] [CrossRef]
- Hassan, E.M.; Mohamed, A.; DeRosa, M.C.; Willmore, W.G.; Hanaoka, Y.; Kiwa, T.; Ozaki, T. High-sensitivity detection of metastatic breast cancer cells via terahertz chemical microscopy using aptamers. Sens. Actuators B Chem. 2019, 287, 595–601. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ding, X.; Iwatsuki, K.; Inoue, H.; Wang, J.; Sakai, K.; Kiwa, T. Detection of cancer cells using immune reaction with a terahertz chemical microscope. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar]
- Kiwa, T.; Tenma, A.; Takahashi, S.; Sakai, K.; Tsukada, K. Label free immune assay using terahertz chemical microscope. Sens. Actuators B Chem. 2013, 187, 8–11. [Google Scholar] [CrossRef]
- Nahar, S.; Mohamed, A.; Ropagnol, X.; Hassanpour, A.; Kiwa, T.; Ozaki, T.; Gauthier, M.A. Noninvasive, label-free, and quantitative monitoring of lipase kinetics using terahertz emission technology. Biotechnol. Bioeng. 2021, 118, 4246–4254. [Google Scholar] [CrossRef]
- Sueda, S.; Niki, T.; Sakai, K.; Kiwa, T. Evaluation of penetration speed of liquids into skin using a terahertz time-of-flight method. Jpn. J. Appl. Phys. 2021, 60, 032002. [Google Scholar] [CrossRef]
- Niki, T.; Kotani, T.; Wang, J.; Sakai, K.; Kiwa, T. Evaluation of Cosmetic Liquid Penetration Using Terahertz Time-of-Flight Method. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar]
- Shimizu, M.; Tomie, R.; Hamada, K.; Teranishi, T.; Wang, J.; Sakai, K.; Kiwa, T. Investigation of Cross-Section Measurement Method for All-Solid-State Batteries Using Terahertz Chemical Microscopy. In Proceedings of the 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 29 August–3 September 2021; pp. 1–2. [Google Scholar]
- Shimizu, M.; Yamanaka, R.; Teranishi, T.; Wang, J.; Sakai, K.; Tsukada, K.; Kiwa, T. Development of impedance measurement of lithium ion batteries electrode using terahertz chemical microscope. IEEJ Trans. Sens. Micromach. 2021, 141, 273–278. [Google Scholar] [CrossRef]
- Kiwa, T.; Akiwa, Y.; Fujita, H.; Teranishi, T.; Sakai, K.; Nose, H.; Kobayashi, M.; Tsukada, K. Electric Potential Distribution on Lithium Ion Battery Cathodes Measured Using Terahertz Chemical Microscopy. J. Infrared Millim. Terahertz Waves 2020, 41, 430–437. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ding, X.; Iwatsuki, K.; Taniizumi, K.; Inoue, H.; Wang, J.; Sakai, K.; Kiwa, T. Detection of Lung Cancer Cells in Solutions Using a Terahertz Chemical Microscope. Sensors 2021, 21, 7631. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yokokawa, M.; Satake, T.; Suzuki, H. A micro IrOx potentiometric sensor for direct determination of organophosphate pesticides. Sens. Actuators B Chem. 2015, 220, 859–863. [Google Scholar] [CrossRef]
- Al-Hilli, S.; Willander, M. The pH response and sensing mechanism of n-type ZnO/electrolyte interfaces. Sensors 2009, 9, 7445–7480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, S.Y.; Hong, S.Y.; Jeong, Y.R.; Yun, J.; Park, H.; Jin, S.W.; Lee, G.; Oh, J.H.; Lee, H.; Lee, S.S.; et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, M.T.; Nguyen, A.; Dereje, N.; Huang, J.; Moore, G.C.; Murzynowski, P.J.; Dagdeviren, C. Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chem. Rev. 2019, 119, 5248–5297. [Google Scholar] [CrossRef]
- Lowe, B.M.; Sun, K.; Zeimpekis, I.; Skylaris, C.K.; Green, N.G. Field-effect sensors-from pH sensing to biosensing: Sensitivity enhancement using streptavidin-biotin as a model system. Analyst 2017, 142, 4173–4200. [Google Scholar] [CrossRef] [Green Version]
- Tsukada, K.; Sebata, M.; Miyahara, Y.; Miyagi, H. Long-life multiple-ISFETS with polymeric gates. Sens. Actuators 1989, 18, 329–336. [Google Scholar] [CrossRef]
- Ertürk, G.; Uzun, L.; Tümer, M.A.; Say, R.; Denizli, A. Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens. Bioelectron. 2011, 28, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Yurugi, K.; Kimura, S.; Ashihara, E.; Tsuji, H.; Kawata, A.; Kamitsuji, Y.; Hishida, R.; Takegawa, M.; Egawa, H.; Maekawa, T. Rapid and accurate measurement of anti-A/B IgG antibody in ABO-unmatched living donor liver transplantation by surface plasmon resonance. Transfus. Med. 2007, 17, 97–106. [Google Scholar] [CrossRef]
- Wu, Q.; Song, D.; Zhang, D.; Sun, Y. An enhanced SPR immunosensing platform for human IgG based on the use of silver nanocubes and carboxy-functionalized graphene oxide. Microchim. Acta 2016, 183, 2177–2184. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Wu, Q.; Ma, P.; Zhang, H.; Wang, Y.; Song, D. Enhancing sensitivity of surface plasmon resonance biosensor by Ag nanocubes/chitosan composite for the detection of mouse IgG. Talanta 2016, 146, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hamers, R.J. Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond thin film. Appl. Phys. Lett. 2004, 85, 3626–3628. [Google Scholar] [CrossRef]
- Kim, J.P.; Lee, B.Y.; Hong, S.; Sim, S.J. Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments. Anal. Biochem. 2008, 381, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Mao, S.; Yu, K.; Lu, G.; Chen, J. Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 2011, 4, 921–930. [Google Scholar] [CrossRef]
- Park, J.Y.; Choi, H.J.; Nam, G.; Cho, K.; Son, J. In Vivo Dual-Modality Terahertz/Magnetic Resonance Imaging Using Superparamagnetic Iron Oxide Nanoparticles as a Dual Contrast Agent. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 93–98. [Google Scholar] [CrossRef]
- Lee, S.-H.; Shin, S.; Roh, Y.; Oh, S.J.; Lee, S.H.; Song, H.S.; Ryu, Y.-S.; Kim, Y.K.; Seo, M. Label-free brain tissue imaging using large-area terahertz metamaterials. Biosens. Bioelectron. 2020, 170, 112663. [Google Scholar] [CrossRef]
- Okada, K.; Cassar, Q.; Murakami, H.; Macgrogan, G.; Guillet, J.P.; Mounaix, P.; Tonouchi, M.; Serita, K. Label-free observation of micrometric inhomogeneity of human breast cancer cell density using terahertz near-field microscopy. Photonics 2021, 8, 151. [Google Scholar] [CrossRef]
- Okada, K.; Serita, K.; Cassar, Q.; Murakami, H.; MacGrogan, G.; Guillet, J.P.; Mounaix, P.; Tonouchi, M. Terahertz near-field microscopy of ductal carcinoma in situ (DCIS) of the breast. J. Phys. Photonics 2020, 2, 044008. [Google Scholar] [CrossRef]
- Serita, K.; Matsuda, E.; Okada, K.; Murakami, H.; Kawayama, I.; Tonouchi, M. Invited Article: Terahertz microfluidic chips sensitivity-enhanced with a few arrays of meta-atoms. APL Photonics 2018, 3, 051603. [Google Scholar] [CrossRef] [Green Version]
- Serita, K.; Tonouchi, M. A Terahertz Microfluidic Chip for Ultra-trace Biosensing. Nippon Laser Igakkaishi 2019, 39, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, E.F.; Riegman, P.H.; Grizzle, W.E.; Watson, P.H. Factors that drive the increasing use of FFPE tissue in basic and translational cancer research. Biotech. Histochem. 2018, 93, 373–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corless, C.L.; Spellman, P.T. Tackling formalin-fixed, paraffin-embedded tumor tissue with next-generation sequencing. Cancer Discov. 2012, 2, 23–24. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, C.; Forcato, C.; Buson, G.; Fontana, F.; Mangano, C.; Doffini, A.; Sero, V.; Lanzellotto, R.; Signorini, G.; Calanca, A.; et al. Digital Sorting of Pure Cell Populations Enables Unambiguous Genetic Analysis of Heterogeneous Formalin-Fixed Paraffin-Embedded Tumors by Next Generation Sequencing. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef]
- Sampson, H.A.; Muñoz-Furlong, A.; Campbell, R.L.; Adkinson, N.F.; Bock, S.A.; Branum, A.; Brown, S.G.A.; Camargo, C.A.; Cydulka, R.; Galli, S.J.; et al. Second symposium on the definition and management of anaphylaxis: Summary report—Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J. Allergy Clin. Immunol. 2006, 117, 391–397. [Google Scholar] [CrossRef]
- Plebani, M. Clinical value and measurement of specific IgE. Clin. Biochem. 2003, 36, 453–469. [Google Scholar] [CrossRef]
- Nishi, H.; Nishimura, S.; Higashiura, M.; Ikeya, N.; Ohta, H.; Tsuji, T.; Nishimura, M.; Ohnishi, S.; Higashi, H. A new method for histamine release from purified peripheral blood basophils using monoclonal antibody-coated magnetic beads. J. Immunol. Methods 2000, 240, 39–46. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Kwon, H.-J.; Cho, S.-H.; Nam, M.; Kim, C.-W. Development and validation of a highly sensitive LC–MS/MS method for in vitro measurement of histamine concentration. J. Pharm. Biomed. Anal. 2019, 172, 33–41. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Sato, K.; Yoshida, Y.; Sakai, K.; Kiwa, T. A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine. Photonics 2022, 9, 26. https://doi.org/10.3390/photonics9010026
Wang J, Sato K, Yoshida Y, Sakai K, Kiwa T. A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine. Photonics. 2022; 9(1):26. https://doi.org/10.3390/photonics9010026
Chicago/Turabian StyleWang, Jin, Kosuke Sato, Yuichi Yoshida, Kenji Sakai, and Toshihiko Kiwa. 2022. "A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine" Photonics 9, no. 1: 26. https://doi.org/10.3390/photonics9010026
APA StyleWang, J., Sato, K., Yoshida, Y., Sakai, K., & Kiwa, T. (2022). A Versatile Terahertz Chemical Microscope and Its Application for the Detection of Histamine. Photonics, 9(1), 26. https://doi.org/10.3390/photonics9010026