Optical Design of a Quantitative Microvolume Nucleic Acid Spectrophotometer with Non-Optical Fiber and All Radiation-Hardened Lens Elements
Abstract
:1. Introduction
2. System Description
T: | transmittance, |
Iₒᵤₜ: | intensity of transmitted light, |
Iᵢₙ: | intensity of incident light, |
- The irradiating beam passing through the nucleic acid sample solution should be a paraxial optical path.
- The wavelength of the incident light spectrum should be within the short, narrow band of the ultraviolet (UV) spectrum (e.g., 230 nm, 260 nm, 280 nm and 320 nm).
- The intensity of the incident light source must not be extremely strong, and the concentration of the organic chromophores should not be extremely high.
- The absorption spectra of nucleic acid (e.g., DNA and RNA) in the sample solution should be independent of the absorption spectra of impure substances.
- It should be assumed that only the non-scattering and non-absorbing photons passing through the nuclear acid sample solution are detected by the sensor.
- It should be assumed that the nucleic acid sample solution through which photons from the incident light source pass is a homogeneous medium.
ε: | extinction coefficients, |
c: | concentration of the species in solution, |
d: | path length of the sample, |
3. Optical Specifications
4. Optical Design and Simulation
5. Results
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
COTS Instruments | NuDrop Avans; Biotechnology [20] | BioDrop Duo+; Biochrom [21] | Genova Nano; Jenway [22] | Nano DOT 2800; Hercuvan Lab Systems [23] | NanoDrop 2000; Thermo Scientific [24] | Q3000; Quawell [25] |
---|---|---|---|---|---|---|
light source | LED | xenon lamp | xenon lamp | LED | xenon lamp | LED |
detector | photodiode | scanning | scanning | photodiode | scanning | photodiode |
sample size requirement | 1.5–2.5 µL | 0.5 µL | 0.5 µL | 1–2 μL | 0.5–2.0 µL | 2 μL |
wavelength range (nm) | 260, 280, 380 | 190–1100 | 198–1000 | 260, 280 | 190–840 | 260, 280 |
measurement modes (nm) | 260, 280, 380 | scanning | 230, 260, 280 | 260, 280 | scanning | 260, 280 |
detection limit (ng/uL) (dsDNA) | 5–3000 | 1–2500 | 2 (at 0.5 mm)–6000 (at 2 mm) | 10–2500 | 2–15000 | 2–4000 |
absorbance accuracy | 0.02–0.2 ±0.002/0.2–1.2 ±0.02 A (at optical path length 1/0.2 mm) | 0–0.5 ± 0.003 A; 0.5–1.0 ± 0.007 A | 0–1 < 0.005 A(260 nm) (at optical path length 0.5 mm) | 1% at 7.332 A(260 nm) | 3% at 0.74 A(350 nm) | 2% |
References
- Isenbarger, T.A.; Carr, C.E.; Johnson, S.S.; Finney, M.; Church, G.M.; Gilbert, W.; Zuber, M.T.; Ruvkun, G. The most conserved genome segments for life detection on earth and other planets. Orig. Life Evol. Biosph. 2008, 38, 517–533. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.E.; Rowedder, H.; Lui, C.S.; Zlatkovsky, I.; Papalias, C.W.; Bolander, J.; Myers, J.W.; Bustillo, J.; Rothberg, J.M.; Zuber, M.T.; et al. Radiation resistance of sequencing chips for in situ life detection. Astrobiology 2013, 13, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Mojarro, A.; Hachey, J.; Bailey, R.; Brown, M.; Doebler, R.; Ruvkun, G.; Zuber, M.T.; Carr, C.E. Radiation resistance of sequencing chips for in situ life detection. Astrobiology 2019, 19, 1139–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, J.; Dinges, R. Photometer Head for Small Test Volumes. U.S. Patent No. 4,643,580 A, 17 February 1987. [Google Scholar]
- Robertson, C.W.; Hansen, J.B. Apparatus and Method for Measuring the Signal from a Fluorescing Nanodrop Contained by Surface Tension. U.S. Patent No. 7,397,036 B2, 8 July 2008. [Google Scholar]
- Platt, U.; Stutz, J. Differential Absorption Spectroscopy. In Differential Optical Absorption Spectroscopy: Principles and Applications, 1st ed.; Guzzi, R., Lanzerotti, L.J., Imboden, D., Platt, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 135–174. [Google Scholar]
- Zhang, J.X.J.; Hoshino, K. Molecular Sensors and Nanodevices: Principles, Designs and Applications in Biomedical Engineering, 2nd ed.; Holt, S., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2018; pp. 271–274. [Google Scholar]
- Tataurov, A.V.; You, Y.; Owczarzy, R. Predicting ultraviolet spectrum of single stranded and double stranded deoxyribonucleic acids. Biophys. Chem. 2008, 133, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, S.R.; Desjardins, P. Quantitation of nucleic acids and proteins. Curr. Protoc. Essent. Lab. Tech. 2011, 5, 2.2.1–2.2.36. [Google Scholar] [CrossRef]
- Wilfinger, W.W.; Mackey, K.; Chomczynski, P. Effect of pH and Ionic Strength on the Spectrophotometric Assessment of Nucleic Acid Purity. BioTechniques 1997, 22, 474–481. [Google Scholar] [CrossRef] [PubMed]
- PerkinElmer Optoelectronics GmbH, RSL3100 Miniature Xenon Flashlamp System; PerkinElmer Optoelectronics GmbH: Wiesbaden, Germany, 2001; pp. 1–4.
- Köhler, A. New method of illumination for photomicrographical purposes. J. R. Microsc. Soc. 1894, 14, 261–262. [Google Scholar]
- Hamamatsu Photonics K.K. Si Photodiode Catalog No. KSPD1022E07; Hamamatsu Photonics K.K.: Hamamatsu City, Japan, 2014; pp. 1–5. [Google Scholar]
- Lin, S.F.; Peng, C.J. Quantitative Micro-Volume Nucleic Acid Detection Device. U.S. Patent No. 9,645,078 B1, 9 May 2017. [Google Scholar]
- Lin, S.F.; Liu, W.C. Optical design of quantitative micro–volume nucleic acid spectrophotometer for space exploration. In Proceedings of the 2020 IEEE International Conference on Applied System Innovation (ICASI), Taitung, Taiwan, 5–8 November 2020; Lam, A.D.K.T., Ji, L.W., Shen, S.T., Prior, S., Young, S.J., Eds.; IEEE: Taitung, Taiwan, 2020; p. J200322, B-101. [Google Scholar]
- Synopsys. CODEV Documentation Library; CODEV Synopsys, Ed.; Synopsys: Mountain View, CA, USA, 2019. [Google Scholar]
- Englisch, W. Quartzglass for space optical applications. In Space Optical Materials and Space Qualification of Optics, Proceedings of SPIE 1989 Technical Symposium on Aerospace Sensing, Orlando, FL, USA, 26 October 1989; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA, 1989; p. 1118. [Google Scholar]
- Synopsys. LightTools Documentation Library; LightTools Synopsys, Ed.; Synopsys: Mountain View, CA, USA, 2019. [Google Scholar]
- OTO Photonics Inc. SE1020C–50–DUVN Document; OTO Photonics, Ed.; OTO Photonics: Hsinchu, Taiwan, 2015. [Google Scholar]
- Avans—NuDrop Micro-Vol. Nucleic Acid Spectrophotometer. Available online: http://www.avansbio.com/product.aspx?id=00000022 (accessed on 12 December 2021).
- BioDrop Duo+—Biochrom. Available online: http://biochrom.co.uk/product/118/biodrop-duo+.html (accessed on 12 December 2021).
- Genova Nano Micro-Volume Spectrophotometer. Available online: http://www.jenway.com/product.asp?dsl=885 (accessed on 12 December 2021).
- ND-2800-ODJ Nano DOT Nucleic Acid Analyzer—Hercuvan. Available online: https://hercuvan.com/product/nd-2800-odj-nano-dot-nucleic-acid-analyzer/ (accessed on 12 December 2021).
- NanoDrop™ 2000/2000c Spectrophotometers. Available online: https://www.thermofisher.com/order/catalog/product/ND-2000 (accessed on 12 December 2021).
- Q3000|Quawell. Available online: https://www.quawell.com/q3000-1 (accessed on 12 December 2021).
Nucleic Acid | Extinction Coefficient ε (260 nm) [(ng/μL)⁻1·cm⁻1] | Concentration Conversion Factors 1 A (260 nm) Unit to c (ng/μL) |
---|---|---|
double-stranded DNA (dsDNA) | 0.02 | 50 |
single-stranded DNA (ssDNA) | 0.027 | 33 |
single-stranded RNA (ssRNA) | 0.025 | 40 |
Item | Specification | Note |
---|---|---|
light source module | 190–2000 nm xenon flash lamp | PerkinElmer RSL3101-30 [11] |
illumination optics | numerical aperture (NA) ≈ 0.57 | Köhler Illumination System [12] with Pinholes |
optical path length | 0.5 mm | sample volume diameter > 2 mm |
sample volume | 2 μL | |
wavelength of photodiode channels | Channel I: 230 nm | Hamamatsu S1336-18 BQ [13] with FWHM 12 nm band pass filter |
Channel II: 260 nm | ||
Channel III: 280 nm | ||
Channel IV: 320 nm | ||
radiation hardness | optical elements made of radiation-hardened optical glass materials. |
Surface Number | Surface Name | Surface Type | Y Radius (mm) | Thickness (mm) | Glass |
---|---|---|---|---|---|
objective | light source | sphere | infinity (N) | 3.50 | |
1 | WG | sphere | infinity (N) | 0.50 | SUPRASIL 3001 |
2 | sphere | infinity (N) | 2.861 | ||
3 | FL1 | sphere | −36.042 | 8.12 | SUPRASIL 3001 |
4 | sphere | −10.167 | 1.00 | ||
5 | FL2 | sphere | 86.662 | 6.79 | SUPRASIL 3001 |
6 | sphere | −25.642 | 1.00 | ||
7 | FL3 | sphere | 26.394 | 8.00 | SUPRASIL 3001 |
8 | sphere | −230.871 | 2.00 | ||
9 | aperture stop | sphere | infinity (N) | 50.00 | |
10 | sphere | infinity (N) | 2.00 | ||
11 | OL1 | sphere | −1040.938 | 8.95 | SUPRASIL 3001 |
12 | sphere | −25.965 | 1.00 | ||
13 | OL2 | sphere | 29.423 | 8.86 | SUPRASIL 3001 |
14 | sphere | −98.194 | 1.00 | ||
15 | OL3 | sphere | 11.034 | 9.58 | SUPRASIL 3001 |
16 | sphere | 28.510 | 2.067 | ||
image | specimen plane | sphere | infinity (N) | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.-F. Optical Design of a Quantitative Microvolume Nucleic Acid Spectrophotometer with Non-Optical Fiber and All Radiation-Hardened Lens Elements. Photonics 2022, 9, 5. https://doi.org/10.3390/photonics9010005
Lin S-F. Optical Design of a Quantitative Microvolume Nucleic Acid Spectrophotometer with Non-Optical Fiber and All Radiation-Hardened Lens Elements. Photonics. 2022; 9(1):5. https://doi.org/10.3390/photonics9010005
Chicago/Turabian StyleLin, Sheng-Feng. 2022. "Optical Design of a Quantitative Microvolume Nucleic Acid Spectrophotometer with Non-Optical Fiber and All Radiation-Hardened Lens Elements" Photonics 9, no. 1: 5. https://doi.org/10.3390/photonics9010005
APA StyleLin, S. -F. (2022). Optical Design of a Quantitative Microvolume Nucleic Acid Spectrophotometer with Non-Optical Fiber and All Radiation-Hardened Lens Elements. Photonics, 9(1), 5. https://doi.org/10.3390/photonics9010005