Superscattering and Directive Antennas via Mode Superposition in Subwavelength Core-Shell Meta-Atoms
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, C.; Lin, X.; Yang, Y.; Xiong, X.; Wang, H.; Li, E.; Kaminer, I.; Zhang, B.; Chen, H. Experimental Observation of Superscattering. Phys. Rev. Lett. 2019, 122, 063901. [Google Scholar] [CrossRef] [Green Version]
- Shcherbinin, V.I.; Fesenko, V.I.; Tkachova, T.I.; Tuz, V.R. Superscattering from Subwavelength Corrugated Cylinders. Phys. Rev. Appl. 2020, 13, 024081. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.H.; Kuznetsov, A.I.; Miroshnichenko, A.E.; Yu, Y.F.; Luk’yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013, 4, 1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staude, I.; Miroshnichenko, A.E.; Decker, M.; Fofang, N.T.; Liu, S.; Gonzales, E.; Dominguez, J.; Luk, T.S.; Neshev, D.N.; Brener, I.; et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 2013, 7, 7824–7832. [Google Scholar] [CrossRef]
- Ruan, Z.; Fan, S. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 2010, 105, 013901. [Google Scholar] [CrossRef] [PubMed]
- Geffrin, J.M.; García-Cámara, B.; Gómez-Medina, R.; Albella, P.; Froufe-Pérez, L.S.; Eyraud, C.; Litman, A.; Vaillon, R.; González, F.; Nieto-Vesperinas, M.; et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 2012, 3, 1171. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Lei, B.; Ma, H.; Xie, W.; Hu, H. Ultra-directional forward scattering by individual core-shell nanoparticles. Opt. Express 2014, 22, 16178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, C.; Lin, X.; Yang, Y.; Gao, F.; Shen, Y.; Lopez, J.; Kaminer, I.; Zhang, B.; Li, E.; Soljačić, M.; et al. Multifrequency Superscattering from Subwavelength Hyperbolic Structures. ACS Photonics 2018, 5, 1506–1511. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lei, B.; Shi, J.; Hu, H. Unidirectional superscattering by multilayered cavities of effective radial anisotropy. Sci. Rep. 2016, 6, 34775. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Ziolkowski, R.W. Metamaterial-inspired, electrically small huygens sources. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 501–505. [Google Scholar] [CrossRef]
- Gómez-Medina, R.; García-Cámara, B.; Suárez-Lacalle, I.; González, F.; Moreno, F.; Juan, M.N.-V.; Sáenz, J.; Nieto-Vesperinas, M.; Sáenz, J.J. Electric and magnetic dipolar response of germanium nanospheres: Interference effects, scattering anisotropy, and optical forces. J. Nanophotonics 2011, 5, 053512. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Miroshnichenko, A.E.; Neshev, D.N.; Kivshar, Y.S. Polarization-independent Fano resonances in arrays of core-shell nanoparticles. Phys. Rev. B 2012, 86, 081407. [Google Scholar] [CrossRef] [Green Version]
- Person, S.; Jain, M.; Lapin, Z.; Sáenz, J.J.; Wicks, G.; Novotny, L. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 2013, 13, 1806–1809. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, M.I.; Saleh, H.; Fernandez-Corbaton, I.; Gralak, B.; Geffrin, J.M.; Rockstuhl, C. Experimental demonstration of spectrally broadband Huygens sources using low-index spheres. APL Photonics 2019, 4, 020802. [Google Scholar] [CrossRef]
- Powell, A.W.; Hibbins, A.P.; Sambles, J.R. Multiband superbackscattering via mode superposition in a single dielectric particle. Appl. Phys. Lett. 2021, 118, 251107. [Google Scholar] [CrossRef]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.W.; Wincott, M.B.; Watt, A.A.R.; Assender, H.E.; Smith, J.M. Controlling the optical scattering of plasmonic nanoparticles using a thin dielectric layer. J. Appl. Phys. 2013, 113, 184311. [Google Scholar] [CrossRef]
- Powell, A.W.; Ware, J.; Beadle, J.G.; Cheadle, D.; Loh, T.H.; Hibbins, A.P.; Roy Sambles, J. Strong, omnidirectional radar backscatter from subwavelength, 3D printed metacubes. IET Microwaves Antennas Propag. 2020, 14, 1862–1868. [Google Scholar] [CrossRef]
- Tribelsky, M.I.; Luk’yanchuk, B.S. Anomalous light scattering by small particles. Phys. Rev. Lett. 2006, 97, 263902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elancheliyan, R.; Dezert, R.; Castano, S.; Bentaleb, A.; Nativ-Roth, E.; Regev, O.; Barois, P.; Baron, A.; Mondain-Monval, O.; Ponsinet, V. Tailored self-assembled nanocolloidal Huygens scatterers in the visible. Nanoscale 2020, 12, 24177–24187. [Google Scholar] [CrossRef] [PubMed]
- Liberal, I.; Ederra, I.; Gonzalo, R.; Ziolkowski, R.W. Superbackscattering from single dielectric particles. J. Opt. 2015, 17, 072001. [Google Scholar] [CrossRef]
- Naraghi, R.R.; Sukhov, S.; Dogariu, A. Directional control of scattering by all-dielectric core-shell spheres. Opt. Lett. 2015, 40, 585. [Google Scholar] [CrossRef] [PubMed]
- Boyuan, M.; Pan, J.; Huang, S.; Yang, D.; Guo, Y.X. Unidirectional Dielectric Resonator Antennas Employing Electric and Magnetic Dipole Moments. IEEE Trans. Antennas Propag. 2021, 69, 6918–6923. [Google Scholar] [CrossRef]
- Guo, L.; Leung, K.W.; Yang, N. Wide-Beamwidth Unilateral Dielectric Resonator Antenna Using Higher-Order Mode. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 93–97. [Google Scholar] [CrossRef]
- Ma, B.; Pan, J.; Huang, S.; Yang, D.; Guo, Y.X. Wideband Endfire Dielectric Resonator Antenna Employing Fundamental and Higher-Order Magnetoelectric Resonances. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 2524–2528. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Miroshnichenko, A.E.; Belov, P.A.; Kivshar, Y.S. Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles. JETP Lett. 2011, 94, 593–598. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Simovski, C.R.; Belov, P.A.; Kivshar, Y.S. Superdirective dielectric nanoantennas. Nanoscale 2014, 6, 7354–7361. [Google Scholar] [CrossRef]
- Hancu, I.M.; Curto, A.G.; Castro-López, M.; Kuttge, M.; Van Hulst, N.F. Multipolar Interference for Directed Light Emission. Nano Lett. 2013, 14, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, R.E.; Lavrinenko, A.V.; Arslanagic, S. A Water-Based Huygens Dielectric Resonator Antenna. IEEE Open J. Antennas Propag. 2020, 1, 493–499. [Google Scholar] [CrossRef]
- Premix. Available online: https://www.premixgroup.com/ (accessed on 10 November 2021).
- Liu, W.; Kivshar, Y.S. Generalized Kerker effects in nanophotonics and meta-optics [Invited]. Opt. Express 2018, 26, 13085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, K.W.; Lai, K.Y.A.; Luk, K.M.; Lin, D. Theory and Experiment of a Coaxial Probe Fed Hemispherical Dielectric Resonator Antenna. IEEE Trans. Antennas Propag. 1993, 41, 1390–1398. [Google Scholar] [CrossRef]
- Leung, K.W.; So, K.K. Theory and experiment of the wideband two-layer hemispherical dielectric resonator antenna. IEEE Trans. Antennas Propag. 2009, 57, 1280–1284. [Google Scholar] [CrossRef]
- Leung, K.W.; Luk, K.M.; Lai, K.Y.A.; Lin, D. Theory and experiment of an aperture-coupled hemispherical dielectric resonator antenna. IEEE Trans. Antennas Propag. 1995, 43, 1192–1198. [Google Scholar] [CrossRef]
- Wong, K.L.; Chen, N.C.; Chen, H.T. Analysis of a Hemispherical Dielectric Resonator Antenna with an Airgap. IEEE Microw. Guid. Wave Lett. 1993, 3, 355–357. [Google Scholar] [CrossRef]
- Leung, K.W. Complex resonance and radiation of hemispherical dielectric-resonator antenna with a concentric conductor. IEEE Trans. Microw. Theory Tech. 2001, 49, 524–531. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell, A.W.; Mrnka, M.; Hibbins, A.P.; Sambles, J.R. Superscattering and Directive Antennas via Mode Superposition in Subwavelength Core-Shell Meta-Atoms. Photonics 2022, 9, 6. https://doi.org/10.3390/photonics9010006
Powell AW, Mrnka M, Hibbins AP, Sambles JR. Superscattering and Directive Antennas via Mode Superposition in Subwavelength Core-Shell Meta-Atoms. Photonics. 2022; 9(1):6. https://doi.org/10.3390/photonics9010006
Chicago/Turabian StylePowell, Alexander W., Michal Mrnka, Alastair P. Hibbins, and J. Roy Sambles. 2022. "Superscattering and Directive Antennas via Mode Superposition in Subwavelength Core-Shell Meta-Atoms" Photonics 9, no. 1: 6. https://doi.org/10.3390/photonics9010006
APA StylePowell, A. W., Mrnka, M., Hibbins, A. P., & Sambles, J. R. (2022). Superscattering and Directive Antennas via Mode Superposition in Subwavelength Core-Shell Meta-Atoms. Photonics, 9(1), 6. https://doi.org/10.3390/photonics9010006