Kerr-Nonlinearity-Triggered Nonclassicality of Magnons in a Photon-Magnon Coupling System
Abstract
:1. Introduction
2. The Model
3. Kerr-Nonlinearity Trigger Nonclassical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiang, Z.L.; Ashhab, S.; You, J.Q. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 2013, 85, 623. [Google Scholar] [CrossRef]
- Kurizki, G.; Bertet, P.; Kubo, Y. Quantum technologies with hybrid systems. Proc. Natl. Acad. Sci. USA 2015, 112, 3866–3873. [Google Scholar] [CrossRef] [PubMed]
- Soykal, Ö.O.; Flatté, M.E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 2010, 104, 077202. [Google Scholar] [CrossRef] [PubMed]
- Soykal, Ö.O.; Flatté, M.E. Size dependence of strong coupling between nanomagnets and photonic cavities. Phys. Rev. B 2010, 82, 104413. [Google Scholar] [CrossRef]
- Huebl, H.; Zollitsch, C.W.; Lotze, J. High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 2013, 111, 127003. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.M.; Li, T.F. Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf. 2015, 1, 15014. [Google Scholar] [CrossRef]
- Cherepanov, V.; Kolokolov, I.; L’vov, V. The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet. Phys. Rep. 1993, 229, 81–144. [Google Scholar] [CrossRef]
- Princep, A.J.; Ewings, R.A.; Ward, S. The Final Chapter In The Saga Of YIG. arXiv 2017, arXiv:1705.06594. [Google Scholar]
- Goryachev, M.; Farr, W.G.; Creedon, D.L. High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. A 2014, 2, 054002. [Google Scholar] [CrossRef]
- Cao, Y.; Yan, P.; Huebl, H. Exchange magnon-polaritons in microwave cavities. Phys. Rev. B 2015, 91, 094423. [Google Scholar] [CrossRef]
- Yao, B.M.; Gui, Y.S.; Xiao, Y. Theory and experiment on cavity magnon-polariton in the one-dimensional configuration. Phys. Rev. B 2015, 92, 184407. [Google Scholar] [CrossRef]
- Hyde, P.; Bai, L.; Harder, M. Linking magnon-cavity strong coupling to magnon-polaritons through effective permeability. Phys. Rev. B 2017, 95, 094416. [Google Scholar] [CrossRef]
- Hisatomi, R.; Osada, A.; Tabuchi, Y. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 2016, 93, 174427. [Google Scholar] [CrossRef]
- Bourhill, J.; Kostylev, N.; Goryachev, M. Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B 2016, 93, 144420. [Google Scholar] [CrossRef]
- Grigoryan, V.L.; Shen, K.; Xia, K. Synchronized spin-photon coupling in a microwave cavity. Phys. Rev. B 2018, 98, 024406. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, C.L.; Zhu, N. Magnon dark modes and gradient memory. Nat. Commun 2015, 6, 8914. [Google Scholar] [CrossRef]
- Bai, L.; Harder, M.; Chen, Y.P. Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 2015, 114, 227201. [Google Scholar] [CrossRef]
- Braggio, C.; Carugno, G.; Guarise, M. Optical manipulation of a magnon-photon hybrid system. Phys. Rev. Lett. 2017, 118, 107205. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Liu, T. Strong interlayer magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures. Phys. Rev. Lett. 2018, 120, 217202. [Google Scholar] [CrossRef]
- Yao, B.; Gui, Y.S.; Rao, J.W. Cooperative polariton dynamics in feedback-coupled cavities. Nat. Commun. 2017, 8, 1437. [Google Scholar] [CrossRef]
- Tabuchi, Y.; Ishino, S.; Noguchi, A. Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 2015, 349, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.P.; Cao, C.; Wang, T.J. Cavity-mediated coupling of phonons and magnons. Phys. Rev. A 2017, 96, 023826. [Google Scholar] [CrossRef]
- Anderson, P.W.; Suhl, H. Instability in the motion of ferromagnets at high microwave power levels. Phys. Rev. 1955, 100, 1788. [Google Scholar] [CrossRef]
- Rezende, S.M.; de Aguiar, F.M. Spin-wave instabilities, auto-oscillations, and chaos in yttrium-iron-garnet. Proc. IEEE 1990, 78, 893–908. [Google Scholar] [CrossRef]
- Bi, M.X.; Yan, X.H.; Zhang, Y. Tristability of cavity magnon polaritons. Phys. Rev. B 2021, 103, 104411. [Google Scholar] [CrossRef]
- Bi, M.X.; Yan, X.H.; Xiao, Y. Magnon dark mode in a strong driving microwave cavity. J. Appl. Phys. 2019, 126, 173902. [Google Scholar] [CrossRef]
- Bi, M.X.; Yan, X.H.; Xiao, Y. Sharply vanishing destructive interference induced by magnon Kerr effect in cavity magnon polaritons. J. Appl. Phys. 2020, 127, 223909. [Google Scholar] [CrossRef]
- Bi, M.X.; Yan, X.H.; Xiao, Y. Manipulation of bistability through the coupling strength in cavity magnon polaritons. J. Phys. D Appl. Phys. 2020, 53, 345001. [Google Scholar] [CrossRef]
- Blundell, S. Magnetism in Condensed Matter; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Zhang, G.Q.; You, J.Q. Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B 2019, 99, 054404. [Google Scholar] [CrossRef]
- Xiong, W.; Chen, J.; Fang, B. Coherent perfect absorption in a weakly coupled atom-cavity system. Phys. Rev. A 2020, 101, 063822. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zhang, G.Q.; Zhang, D. Bistability of cavity magnon polaritons. Phys. Rev. Lett. 2018, 120, 057202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Wang, Y.P.; You, J.Q. Theory of the magnon Kerr effect in cavity magnonics. Sci. China Phys. 2019, 62, 987511. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wang, B.; Xiong, H. Magnon-induced high-order sideband generation. Opt. Lett. 2018, 43, 3698–3701. [Google Scholar] [CrossRef]
- Liu, Z.X.; You, C.; Wang, B. Phase-mediated magnon chaos-order transition in cavity optomagnonics. Opt. Lett. 2019, 44, 507–510. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Chen, Z.; Xiong, W. Parity-symmetry-breaking quantum phase transition via parametric drive in a cavity magnonic system. Phys. Rev. B 2021, 104, 064423. [Google Scholar] [CrossRef]
- Xiong, W.; Tian, M.; Zhang, G.Q.; You, J.Q. Strong long-range spin-spin coupling via a Kerr magnon interface. Phys. Rev. B 2022, 105, 245310. [Google Scholar] [CrossRef]
- Wang, Y.M.; Xiong, W.; Xu, Z.Y.; Zhang, G.Q.; You, J.Q. Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron. 2022, 65, 260314. [Google Scholar] [CrossRef]
- Wang, Y.P.; Zhang, G.Q.; Zhang, D. Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B 2016, 94, 224410. [Google Scholar] [CrossRef]
- Kuang, L.M.; Ouyang, Z.W. Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates. Phys. Rev. A 2000, 61, 023604. [Google Scholar] [CrossRef]
- Jing, H.; Chen, J.L.; Ge, M.L. Squeezing effects of an atom laser: Beyond the linear model. Phys. Rev. A 2001, 65, 015601. [Google Scholar] [CrossRef]
- Haghshenasfarda, Z.; Cottamb, M.G. Sub-Poissonian statistics and squeezing of magnons due to the Kerr effect in a hybrid coupled cavity–magnon system. J. Appl. Phys. 2020, 128, 033901. [Google Scholar] [CrossRef]
- Schleich, W.P. Quantum Optics in Phase Space; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. 1932, 40, 749. [Google Scholar] [CrossRef]
- Walls, D.F.; Milburn, G.J. Quantum Optics; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Buzek, V.; Vidiella-Barranco, A.; Knight, P.L. Superpositions of coherent states: Squeezing and dissipation. Phys. Rev. A 1992, 45, 6570–6585. [Google Scholar] [CrossRef]
- Naikoo, J.; Thapliyal, K.; Pathak, A. Probing nonclassicality in an optically driven cavity with two atomic ensembles. Phys. Rev. A 2018, 97, 063840. [Google Scholar] [CrossRef]
- Xie, J.; Ma, S.; Li, F. Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A 2020, 101, 042331. [Google Scholar] [CrossRef]
- Liu, Z.X.; Xiong, H.; Wu, M.Y. Absorption of magnons in dispersively coupled hybrid quantum systems. Phys. Rev. A 2021, 103, 063702. [Google Scholar] [CrossRef]
- Wang, F.; Gou, C.; Xu, J. Hybrid magnon-atom entanglement and magnon blockade via quantum interference. Phys. Rev. A 2022, 106, 013705. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Y. Quantifying nonclassicality via Wigner-Yanase skew information. Phys. Rev. A 2019, 100, 032116. [Google Scholar] [CrossRef]
- Fu., S.; Luo, S.; Zhang, Y. Dynamics of field nonclassicality in the Jaynes–Cummings model. Quantum Inf. Process. 2021, 20, 88. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Tang, S.; Li, S. Kerr-Nonlinearity-Triggered Nonclassicality of Magnons in a Photon-Magnon Coupling System. Photonics 2022, 9, 681. https://doi.org/10.3390/photonics9100681
Jiang X, Tang S, Li S. Kerr-Nonlinearity-Triggered Nonclassicality of Magnons in a Photon-Magnon Coupling System. Photonics. 2022; 9(10):681. https://doi.org/10.3390/photonics9100681
Chicago/Turabian StyleJiang, Xi, Shiqing Tang, and Songsong Li. 2022. "Kerr-Nonlinearity-Triggered Nonclassicality of Magnons in a Photon-Magnon Coupling System" Photonics 9, no. 10: 681. https://doi.org/10.3390/photonics9100681
APA StyleJiang, X., Tang, S., & Li, S. (2022). Kerr-Nonlinearity-Triggered Nonclassicality of Magnons in a Photon-Magnon Coupling System. Photonics, 9(10), 681. https://doi.org/10.3390/photonics9100681