Measuring the pth-Order Correlation Function of Light Field via Two-Level Atoms
Abstract
:1. Introduction
2. Measuring the pth-Order Correlation Function of the Light Field in p-Photon JC Model
3. Measuring the th-Order Correlation Function of the Optical Field in -Photon TC Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Specific Solution Procedure for the System of Differential Equations (3) and (4)
References
- Van Enk, S.; Cirac, J.; Zoller, P. Photonic channels for quantum communication. Science 1998, 279, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Imoto, N.; Mukai, T. Dense coding in photonic quantum communication with enhanced information capacity. Phys. Rev. A 1999, 59, 1092–1097. [Google Scholar] [CrossRef]
- Gisin, N.; Thew, R. Quantum communication. Nat. Photonics 2007, 1, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Brito, S.; Canabarro, A.; Cavalcanti, D.; Chaves, R. Satellite-Based Photonic Quantum Networks Are Small-World. PRX Quantum 2021, 2, 010304. [Google Scholar] [CrossRef]
- Gao, Y.P.; Liu, X.C.; Cao, C.; Han, L.H.; Lu, P.F. Optomagnonically induced RoF chaotic synchronization. New J. Phys. 2022, 24, 083022. [Google Scholar] [CrossRef]
- Zhou, M.G.; Cao, X.Y.; Lu, Y.S.; Wang, Y.; Bao, Y.; Jia, Z.Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Experimental quantum advantage with quantum coupon collector. Research 2022, 2022, 9798679. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.B.; Li, C.L.; Xie, Y.M.; Weng, C.X.; Gu, J.; Cao, X.Y.; Lu, Y.S.; Li, B.H.; Yin, H.L.; Chen, Z.B. Homodyne Detection Quadrature Phase Shift Keying Continuous-Variable Quantum key Distribution with High Excess Noise Tolerance. PRX Quantum 2021, 2, 040334. [Google Scholar] [CrossRef]
- Xie, Y.M.; Lu, Y.S.; Weng, C.X.; Cao, X.Y.; Jia, Z.Y.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Breaking the Rate-Loss Bound of Quantum Key Distribution with Asynchronous Two-Photon Interference. PRX Quantum 2022, 3, 020315. [Google Scholar] [CrossRef]
- Duan, L.M.; Kimble, H.J. Scalable Photonic Quantum Computation through Cavity-Assisted Interactions. Phys. Rev. Lett. 2004, 92, 127902. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.P.; Wang, Z.X.; Wang, T.J.; Wang, C. Optomechanically engineered phononic mode resonance. Optics Express 2017, 25, 26638–26650. [Google Scholar] [CrossRef]
- O’brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Flamini, F.; Spagnolo, N.; Sciarrino, F. Photonic quantum information processing: A review. Rep. Prog. Phys. 2018, 82, 016001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.F.; Wang, T.J.; Gao, Y.P.; Cao, C.; Wang, C. Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A 2018, 98, 033824. [Google Scholar] [CrossRef]
- Slussarenko, S.; Pryde, G.J. Photonic quantum information processing: A concise review. Appl. Phys. Rev. 2019, 6, 041303. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.H.; Shi, Z.C.; Song, J.; Xia, Y. Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade. Phys. Rev. A 2020, 102, 022617. [Google Scholar] [CrossRef]
- Kang, Y.H.; Shi, Z.C.; Huang, B.H.; Song, J.; Xia, Y. Flexible scheme for the implementation of nonadiabatic geometric quantum computation. Phys. Rev. A 2020, 101, 032322. [Google Scholar] [CrossRef]
- Zheng, R.H.; Xiao, Y.; Su, S.L.; Chen, Y.H.; Shi, Z.C.; Song, J.; Xia, Y.; Zheng, S.B. Fast and dephasing-tolerant preparation of steady Knill-Laflamme-Milburn states via dissipative Rydberg pumping. Phys. Rev. A 2021, 103, 052402. [Google Scholar] [CrossRef]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.H.; Kang, Y.H.; Su, S.L.; Song, J.; Xia, Y. Robust and high-fidelity nondestructive Rydberg parity meter. Phys. Rev. A 2020, 102, 012609. [Google Scholar] [CrossRef]
- Barbieri, M. Optical Quantum Metrology. PRX Quantum 2022, 3, 010202. [Google Scholar] [CrossRef]
- Lugiato, L.A.; Gatti, A.; Brambilla, E. Quantum imaging. J. Opt. B Quantum Semiclassical Opt. 2002, 4, S176–S183. [Google Scholar] [CrossRef]
- Lemos, G.B.; Borish, V.; Cole, G.D.; Ramelow, S.; Lapkiewicz, R.; Zeilinger, A. Quantum imaging with undetected photons. Nature 2014, 512, 409–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berchera, I.R.; Degiovanni, I.P. Quantum imaging with sub-Poissonian light: Challenges and perspectives in optical metrology. Metrologia 2019, 56, 024001. [Google Scholar] [CrossRef]
- Gilaberte Basset, M.; Setzpfandt, F.; Steinlechner, F.; Beckert, E.; Pertsch, T.; Gräfe, M. Perspectives for applications of quantum imaging. Laser Photonics Rev. 2019, 13, 1900097. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.H.; Shi, Z.C.; Song, J.; Xia, Y. Effective discrimination of chiral molecules in a cavity. Opt. Lett. 2020, 45, 4952–4955. [Google Scholar] [CrossRef] [PubMed]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef] [Green Version]
- Pirandola, S.; Bardhan, B.R.; Gehring, T.; Weedbrook, C.; Lloyd, S. Advances in photonic quantum sensing. Nat. Photonics 2018, 12, 724–733. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, B.J.; Lett, P.D.; Marino, A.M.; Pooser, R.C. Quantum sensing with squeezed light. ACS Photonics 2019, 6, 1307–1318. [Google Scholar] [CrossRef]
- Clark, A.S.; Chekhova, M.; Matthews, J.C.; Rarity, J.G.; Oulton, R.F. Special Topic: Quantum sensing with correlated light sources. Appl. Phys. Lett. 2021, 118, 060401. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon Correlations. Phys. Rev. Lett. 1963, 10, 84–86. [Google Scholar] [CrossRef] [Green Version]
- Glauber, R.J. The Quantum Theory of Optical Coherence. Phys. Rev. 1963, 130, 2529–2539. [Google Scholar] [CrossRef] [Green Version]
- Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Paul, H. Photon antibunching. Rev. Mod. Phys. 1982, 54, 1061–1102. [Google Scholar] [CrossRef]
- Davidovich, L. Sub-Poissonian processes in quantum optics. Rev. Mod. Phys. 1996, 68, 127–173. [Google Scholar] [CrossRef]
- Birnbaum, K.M.; Boca, A.; Miller, R.; Boozer, A.D.; Northup, T.E.; Kimble, H.J. Photon blockade in an optical cavity with one trapped atom. Nature 2005, 436, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.F.; Liao, J.Q.; Sun, C.P. Photon blockade induced by atoms with Rydberg coupling. Phys. Rev. A 2013, 87, 023822. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.Q.; Nori, F. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A 2013, 88, 023853. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Miranowicz, A.; Liao, J.Q.; Nori, F.; Jing, H. Nonreciprocal Photon Blockade. Phys. Rev. Lett. 2018, 121, 153601. [Google Scholar] [CrossRef] [Green Version]
- Chakram, S.; He, K.; Dixit, A.V.; Oriani, A.E.; Naik, R.K.; Leung, N.; Kwon, H.; Ma, W.L.; Jiang, L.; Schuster, D.I. Multimode photon blockade. Nat. Phys. 2022, 18, 879–884. [Google Scholar] [CrossRef]
- Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.; Petroff, P.; Zhang, L.; Hu, E.; Imamoglu, A. A quantum dot single-photon turnstile device. Science 2000, 290, 2282–2285. [Google Scholar] [CrossRef]
- Gies, C.; Jahnke, F.; Chow, W.W. Photon antibunching from few quantum dots in a cavity. Phys. Rev. A 2015, 91, 061804. [Google Scholar] [CrossRef] [Green Version]
- Kaupp, H.; Hümmer, T.; Mader, M.; Schlederer, B.; Benedikter, J.; Haeusser, P.; Chang, H.C.; Fedder, H.; Hänsch, T.W.; Hunger, D. Purcell-Enhanced Single-Photon Emission from Nitrogen-Vacancy Centers Coupled to a Tunable Microcavity. Phys. Rev. Appl. 2016, 6, 054010. [Google Scholar] [CrossRef] [Green Version]
- Kiršanskė, G.; Thyrrestrup, H.; Daveau, R.S.; Dreeßen, C.L.; Pregnolato, T.; Midolo, L.; Tighineanu, P.; Javadi, A.; Stobbe, S.; Schott, R.; et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 2017, 96, 165306. [Google Scholar] [CrossRef] [Green Version]
- Zubizarreta Casalengua, E.; López Carreño, J.; del Valle, E.; Laussy, F. Structure of the harmonic oscillator in the space of n-particle Glauber correlators. J. Math. Phys. 2017, 58, 062109. [Google Scholar] [CrossRef] [Green Version]
- Grünwald, P. Effective second-order correlation function and single-photon detection. New J. Phys. 2019, 21, 093003. [Google Scholar] [CrossRef]
- Faraon, A.; Majumdar, A.; Englund, D.; Kim, E.; Bajcsy, M.; Vučković, J. Integrated quantum optical networks based on quantum dots and photonic crystals. New J. Phys. 2011, 13, 055025. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bergholm, V.; Brádler, K.; Bromley, T.R.; Collins, M.J.; Dhand, I.; Fumagalli, A.; Gerrits, T.; Goussev, A.; Helt, L.G.; et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 2021, 591, 54–60. [Google Scholar] [CrossRef]
- Spring, J.B.; Metcalf, B.J.; Humphreys, P.C.; Kolthammer, W.S.; Jin, X.M.; Barbieri, M.; Datta, A.; Thomas-Peter, N.; Langford, N.K.; Kundys, D.; et al. Boson sampling on a photonic chip. Science 2013, 339, 798–801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Gong, W.; Shen, X.; Huang, D.; Han, S. Improving resolution by the second-order correlation of light fields. Opt. Lett. 2009, 34, 1222–1224. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Twiss, R.Q. Correlation between photons in two coherent beams of light. Nature 1956, 177, 27–29. [Google Scholar] [CrossRef]
- Foellmi, C. Intensity interferometry and the second-order correlation function in astrophysics. Astron. Astrophys. 2009, 507, 1719–1727. [Google Scholar] [CrossRef]
- Huang, C.H.; Wen, Y.H.; Liu, Y.W. Measuring the second order correlation function and the coherence time using random phase modulation. Opt. Express 2016, 24, 4278–4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safronenkov, D.; Borshchevskaya, N.; Novikova, T.; Katamadze, K.; Kuznetsov, K.; Kitaeva, G.K. Measurement of the biphoton second-order correlation function with analog detectors. Opt. Express 2021, 29, 36644–36659. [Google Scholar] [CrossRef] [PubMed]
- da Silva, M.P.; Bozyigit, D.; Wallraff, A.; Blais, A. Schemes for the observation of photon correlation functions in circuit QED with linear detectors. Phys. Rev. A 2010, 82, 043804. [Google Scholar] [CrossRef] [Green Version]
- Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J.; Eichler, C.; Baur, M.; Bianchetti, R.; Leek, P.J.; Filipp, S.; Da Silva, M.P.; et al. Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors. Nat. Phys. 2011, 7, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Santarsiero, M.; Borghi, R. Measuring spatial coherence by using a reversed-wavefront Young interferometer. Opt. Lett. 2006, 31, 861–863. [Google Scholar] [CrossRef]
- Leek, P.J.; Filipp, S.; Maurer, P.; Baur, M.; Bianchetti, R.; Fink, J.M.; Göppl, M.; Steffen, L.; Wallraff, A. Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 2009, 79, 180511. [Google Scholar] [CrossRef] [Green Version]
- Felicetti, S.; Pedernales, J.S.; Egusquiza, I.L.; Romero, G.; Lamata, L.; Braak, D.; Solano, E. Spectral collapse via two-phonon interactions in trapped ions. Phys. Rev. A 2015, 92, 033817. [Google Scholar] [CrossRef] [Green Version]
- Casanova, J.; Puebla, R.; Moya-Cessa, H.; Plenio, M.B. Connecting nth order generalised quantum Rabi models: Emergence of nonlinear spin-boson coupling via spin rotations. Npj Quantum Inf. 2018, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Felicetti, S.; Rossatto, D.Z.; Rico, E.; Solano, E.; Forn-Díaz, P. Two-photon quantum Rabi model with superconducting circuits. Phys. Rev. A 2018, 97, 013851. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Napoli, A.; Militello, B. Emulation of n-photon Jaynes-Cummings and anti-Jaynes-Cummings models via parametric modulation of a cyclic qutrit. Phys. Rev. A 2019, 99, 033823. [Google Scholar] [CrossRef]
- Scully, M.O.; Zubairy, M.S. Quantum Optics; American Association of Physics Teachers: College Park, MA, USA, 1999. [Google Scholar]
- Lu, W.; Chen, J.; Kuang, L.M.; Wang, X. Optimal state for a Tavis-Cummings quantum battery via the Bethe ansatz method. Phys. Rev. A 2021, 104, 043706. [Google Scholar] [CrossRef]
- Johansson, J.R.; Nation, P.D.; Nori, F. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 2012, 183, 1760–1772. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Zhai, C.; Tang, S. Measuring the pth-Order Correlation Function of Light Field via Two-Level Atoms. Photonics 2022, 9, 727. https://doi.org/10.3390/photonics9100727
Lu W, Zhai C, Tang S. Measuring the pth-Order Correlation Function of Light Field via Two-Level Atoms. Photonics. 2022; 9(10):727. https://doi.org/10.3390/photonics9100727
Chicago/Turabian StyleLu, Wangjun, Cuilu Zhai, and Shiqing Tang. 2022. "Measuring the pth-Order Correlation Function of Light Field via Two-Level Atoms" Photonics 9, no. 10: 727. https://doi.org/10.3390/photonics9100727
APA StyleLu, W., Zhai, C., & Tang, S. (2022). Measuring the pth-Order Correlation Function of Light Field via Two-Level Atoms. Photonics, 9(10), 727. https://doi.org/10.3390/photonics9100727