A Novel Electromagnetic Centric Multiphysics Parametric Modeling Approach Using Neuro-Space Mapping for Microwave Passive Components
Abstract
:1. Introduction
2. Proposed Neuro-SM Multiphysics Model
2.1. Structure of the Proposed Neuro-SM Multiphysics Parametric Model
2.2. Proposed Multiphysics Training and Test Algorithm
3. Examples
3.1. Iris Coupled Microwave Cavity Filter
3.2. Three-Pole Waveguide Filter
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aaen, P.H.; Wood, J.; Bridges, D.; Zhang, L.; Johnson, E.; Pla, J.A.; Barbieri, T.; Snowden, C.M.; Everett, J.P.; Kearney, M.J. Multiphysics Modeling of RF and Microwave High-Power Transistors. IEEE Trans. Microw. Theory Tech. 2012, 60, 4013–4023. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Gong, C. Modified hybrid model of boost converters for parameter identification of passive components. IET Power Electron. 2018, 11, 764–771. [Google Scholar] [CrossRef]
- Zhang, H.X.; Huang, L.; Wang, W.J.; Zhao, Z.G.; Zhou, L.; Chen, W.; Zhou, H.; Zhan, Q.; Kolundzija, B.; Yin, W.Y. Massively parallel electromagnetic–thermal cosimulation of large antenna arrays. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1551–1555. [Google Scholar] [CrossRef]
- Lin, Y.S.; Lu, P.S.; Wu, Y.C. A Novel Configurable Microwave Passive Component Based on Programmable Bridged-T Coil Array. IEEE Trans. Microw. Theory Tech. 2021, 69, 3001–3014. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, F.; Zhang, W.; Ma, J.; Zhang, Q.J. A novel training approach for parametric modeling of microwave passive components using Pade via Lanczos and EM sensitivities. IEEE Trans. Microw. Theory Tech. 2020, 68, 2215–2233. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, S.; Li, H. Research on the multi-physics simulation and chip implementation of piezoelectric contour mode resonator. In Proceedings of the 2017 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Chengdu, China, 27–30 October 2017; pp. 217–221. [Google Scholar]
- Sharma, S.; Sarris, C.D. A novel multiphysics optimization-driven methodology for the design of microwave ablation antennas. IEEE J. Multiscale Multiphys. Comput. Tech. 2016, 1, 151–160. [Google Scholar] [CrossRef]
- Chatterjee, G.; Das, A.; Gope, D. Accelerated 3D MoM solution of adaptively refined successive new meshes on package-board geometry. In Proceedings of the 2015 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Ottawa, ON, Canada, 11–14 August 2015; pp. 1–3. [Google Scholar]
- Xue, Z.; Wu, Y.; Jin, Y. An Efficient iterative MoM-PO Hybrid Method for Calculating Scattered Fields of the Multiscale and Multiphysics Scatterers. In Proceedings of the 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Hangzhou, China, 7–9 December 2020; pp. 1–3. [Google Scholar]
- Tag, A.; Chauhan, V.; Weigel, R.; Hagelauer, A.; Bader, B.; Huck, C.; Pitschi, M.; Karolewski, D. Multiphysics Modeling of BAW Filters. In Proceedings of the 2015 IEEE International Ultrasonics Symposium (IUS), Taipei, Taiwan, 21–24 October 2015; pp. 1–4. [Google Scholar]
- Liu, X.; Wu, Q.; Shi, X. Multi-physics analysis of waveguide filters for wireless communication systems. In Proceedings of the 2016 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Beijing, China, 27–29 July 2016; pp. 1–2. [Google Scholar]
- Sirci, S.; Sánchez-Soriano, M.Á.; Martínez, J.D.; Boria, V.E.; Gentili, F.; Bösch, W.; Sorrentino, R. Design and Multiphysics Analysis of Direct and Cross-Coupled SIW Combline Filters Using Electric and Magnetic Couplings. IEEE Trans. Microw. Theory Tech. 2015, 63, 4341–4354. [Google Scholar] [CrossRef]
- Ravelo, B. Multiphysics Model of Microstrip Structure under High Voltage Pulse Excitation. IEEE J. Multiscale Multiphys. Comput. Tech. 2018, 3, 88–96. [Google Scholar] [CrossRef]
- Wu, F.; Fan, M.; Liu, W.; Liang, B.; Zhou, Y. An Efficient Time-Domain Electromagnetic Algorithm Based on LSTM Neural Network. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1322–1326. [Google Scholar] [CrossRef]
- Sadrossadat, S.A.; Cao, Y.; Zhang, Q. Parametric Modeling of Microwave Passive Components Using Sensitivity-Analysis-Based Adjoint Neural-Network Technique. IEEE Trans. Microw. Theory Tech. 2013, 61, 1733–1747. [Google Scholar] [CrossRef]
- Na, W.; Liu, K.; Zhang, W.; Feng, F.; Xie, H.; Jin, D. Automated Multilayer Neural Network Structure Adaptation Method with l 1 Regularization for Microwave Modeling. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 815–818. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Y.; Jin, X.; Zhang, W.; Shi, W. Multiphysics parametric modeling of microwave passive components using artificial neural networks. Prog. Electromagn. Res. M 2018, 72, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Na, W.; Zhang, W.; Yan, S.; Feng, F.; Zhang, W.; Zhang, Y. Automated Neural Network-Based Multiphysics Parametric Modeling of Microwave Components. IEEE Access 2019, 7, 141153–141160. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, F.; Zhang, J.; Zhang, S.; Gongal-Reddy, V.; Zhang, Q. Advanced parametric modeling using neuro-transfer function for EM based multiphysics analysis of microwave passive components. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–3. [Google Scholar]
- Zhang, W.; Feng, F.; Yan, S.; Zhao, Z.; Na, W. Multiphysics Parametric Modeling of Microwave Components Using Combined Neural Networks and Transfer Function. IEEE Access 2020, 8, 5383–5392. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, F.; Gongal-Reddy, V.M.R.; Zhang, J.; Yan, S.; Ma, J.; Zhang, Q.J. Space Mapping Approach to Electromagnetic Centric Multiphysics Parametric Modeling of Microwave Components. IEEE Trans. Microw. Theory Tech. 2018, 66, 3169–3185. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Gupta, K.C. Neural Networks for RF and Microwave Design; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- Schmidt, S.R.; Launsby, R.G. Understanding Industrial Designed Experiments; Air Force Academy: Colorado Springs, CO, USA, 1992. [Google Scholar]
- Zhu, L.; Zhang, Q.; Liu, K.; Ma, Y.; Peng, B.; Yan, S. A novel dynamic neuro-space mapping approach for nonlinear microwave device modeling. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 131–133. [Google Scholar] [CrossRef]
Input Variables | Training Data | Test Data | |||||
---|---|---|---|---|---|---|---|
Min | Max | Step | Min | Max | Step | ||
Coarse model | (mm) | 4.81 | 5.13 | 0.04 | 4.83 | 5.11 | 0.04 |
(mm) | 6.73 | 7.05 | 0.04 | 6.75 | 7.03 | 0.04 | |
(mm) | 7.24 | 7.56 | 0.04 | 7.26 | 7.54 | 0.04 | |
Fine model | (mm) | 4.818 | 5.098 | 0.07 | 4.84 | 5.085 | 0.035 |
(mm) | 6.7635 | 7.0035 | 0.06 | 6.792 | 7.002 | 0.03 | |
(mm) | 7.254 | 7.494 | 0.06 | 7.285 | 7.495 | 0.03 | |
(W) | 10 | 50 | 10 | 12.5 | 47.5 | 5 |
Modeling Method | EM Data | Multiphysics Data | Training Error | Test Error | Training Time | Modeling Time |
---|---|---|---|---|---|---|
ANN model | 0 | 81 | 1.81% | 2.75% | 0.1 h | 10.6 h |
25 | 1.45% | 14.76% | 0.1 h | 3.4 h | ||
Neuro-TF model | 0 | 81 | 1.49% | 2.04% | 0.25 h | 10.75 h |
25 | 1.24% | 3.14% | 0.25 h | 3.55 h | ||
Existing Neuro-SM model | 81 | 81 | 1.35% | 1.85% | 0.25 h | 11.54 h |
25 | 1.43% | 2.65% | 0.25 h | 4.34 h | ||
Proposed Neuro-SM model | 81 | 81 | 1.12% | 1.23% | 0.25 h | 11.54 h |
25 | 1.20% | 1.31% | 0.25 h | 4.34 h |
No. of Multiphysics Data | Computation Time | |
---|---|---|
ANSYS Workbench | Proposed Neuro-SM Model | |
1 | ≈7 min | 4.34 h + 0.03 s |
50 | ≈6 h | 4.34 h + 1.6 s |
100 | ≈12 h | 4.34 h + 3.1 s |
Input Variables | Training Data | Test Data | |||||
---|---|---|---|---|---|---|---|
Min | Max | Step | Min | Max | Step | ||
Coarse model | (mm) | 2.86 | 3.1 | 0.03 | 2.87 | 3.08 | 0.03 |
(mm) | 3.08 | 3.32 | 0.03 | 3.09 | 3.30 | 0.03 | |
(mm) | 2.73 | 2.97 | 0.03 | 2.74 | 2.95 | 0.03 | |
(mm) | 2.535 | 2.775 | 0.03 | 2.54 | 2.75 | 0.03 | |
Fine model | (mm) | 2.875 | 3.075 | 0.05 | 2.89 | 3.065 | 0.025 |
(mm) | 3.1 | 3.3 | 0.05 | 3.115 | 3.29 | 0.025 | |
(mm) | 2.75 | 2.95 | 0.05 | 2.765 | 2.94 | 0.025 | |
(mm) | 2.55 | 2.75 | 0.05 | 2.565 | 2.74 | 0.025 | |
(V) | −400 | 400 | 100 | −175 | 175 | 50 | |
(V) | −400 | 400 | 100 | −175 | 175 | 50 |
Modeling Method | EM data | Multiphysics Data | Training Error | Test Error | Data Generation Time | Training Time | Modeling Time |
---|---|---|---|---|---|---|---|
ANN model | 0 | 81 | 1.35% | 2.94% | 67.9 h | 0.15 h | 68.05 h |
25 | 1.30% | 13.22% | 23.5 h | 0.15 h | 23.65 h | ||
Neuro-TF model | 0 | 81 | 1.53% | 2.34% | 67.9 h | 0.15 h | 68.05 h |
25 | 1.29% | 4.21% | 23.5 h | 0.15 h | 23.65 h | ||
Existing Neuro-SM model | 81 | 81 | 1.58% | 1.71% | 69.2 h | 0.3 h | 69.5 h |
25 | 1.61% | 2.50% | 24.8 h | 0.3 h | 25.1 h | ||
Proposed Neuro-SM model | 81 | 81 | 1.19% | 1.44% | 69.2 h | 0.3 h | 69.5 h |
25 | 1.25% | 1.63% | 24.8 h | 0.3 h | 25.1 h |
No. of Multiphysics Data | Computation Time | |
---|---|---|
COMSOL Multiphysics | Proposed Neuro-SM Model | |
1 | 0.9 h | 25.1 h + 0.05 s |
50 | 45 h | 25.1 h + 2 s |
100 | 90 h | 25.1 h + 4 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Zhang, Y.; Liu, W.; Liu, G.; Shi, W. A Novel Electromagnetic Centric Multiphysics Parametric Modeling Approach Using Neuro-Space Mapping for Microwave Passive Components. Photonics 2022, 9, 960. https://doi.org/10.3390/photonics9120960
Yan S, Zhang Y, Liu W, Liu G, Shi W. A Novel Electromagnetic Centric Multiphysics Parametric Modeling Approach Using Neuro-Space Mapping for Microwave Passive Components. Photonics. 2022; 9(12):960. https://doi.org/10.3390/photonics9120960
Chicago/Turabian StyleYan, Shuxia, Yaoqian Zhang, Wenyuan Liu, Gaohua Liu, and Weiguang Shi. 2022. "A Novel Electromagnetic Centric Multiphysics Parametric Modeling Approach Using Neuro-Space Mapping for Microwave Passive Components" Photonics 9, no. 12: 960. https://doi.org/10.3390/photonics9120960
APA StyleYan, S., Zhang, Y., Liu, W., Liu, G., & Shi, W. (2022). A Novel Electromagnetic Centric Multiphysics Parametric Modeling Approach Using Neuro-Space Mapping for Microwave Passive Components. Photonics, 9(12), 960. https://doi.org/10.3390/photonics9120960