Design and Characterization of Nanostructured Ag2O-Ag/Au Based on Al2O3 Template Membrane for Photoelectrochemical Water Splitting and Hydrogen Generation
Abstract
:1. Introduction
2. Experimental Part
2.1. Aluminum Oxide Template Preparation
2.2. Preparation of Ag2O-Ag/Au/Al2O3
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization and Analyses
3.2. The Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic Solar Hydrogen Production from Water on a 100-M2 Scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Hisatomi, T.; Domen, K. Reaction Systems for Solar Hydrogen Production via Water Splitting with Particulate Semiconductor Photocatalysts. Nat. Catal. 2019, 2, 387–399. [Google Scholar] [CrossRef]
- Pagliaro, M. Preparing for the Future: Solar Energy and Bioeconomy in the United Arab Emirates. Energy Sci. Eng. 2019, 7, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic Water Splitting with a Quantum Efficiency of Almost Unity. Nature 2020, 581, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.; Rabia, M.; Shaban, M. Synthesis and Characterization of Biogenic Iron Oxides of Different Nanomorphologies from Pomegranate Peels for Efficient Solar Hydrogen Production. J. Mater. Res. Technol. 2020, 9, 4255–4271. [Google Scholar] [CrossRef]
- Shaban, M.; Ali, S.; Rabia, M. Design and Application of Nanoporous Graphene Oxide Film for CO2, H2 and C2 H2 Gases Sensing. J. Mater. Res. Technol. 2019, 8, 4510–4520. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Rabia, M.; Shaban, M.; Aly, A.H.; Ahmed, A.M. Preparation of Hexagonal Nanoporous Al2O3/TiO2/TiN as a Novel Photodetector with High Efficiency. Sci. Rep. 2021, 11, 17572. [Google Scholar] [CrossRef]
- Kang, Z.; Cheng, Y.; Zheng, Z.; Cheng, F.; Chen, Z.; Li, L.; Tan, X.; Xiong, L.; Zhai, T.; Gao, Y. MoS2-Based Photodetectors Powered by Asymmetric Contact Structure with Large Work Function Difference. Nano-Micro Lett. 2019, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Lee, W.W.; Yang, D.W.; Chang, W.J.; Kwon, S.S.; Park, W. Il Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces 2018, 10, 14170–14174. [Google Scholar] [CrossRef]
- Shaban, M.; Rabia, M.; El-Sayed, A.M.A.; Ahmed, A.; Sayed, S. Photocatalytic Properties of PbS/Graphene Oxide/Polyaniline Electrode for Hydrogen Generation. Sci. Rep. 2017, 7, 14100. [Google Scholar] [CrossRef]
- Rabia, M.; Mohamed, H.S.H.; Shaban, M.; Taha, S. Preparation of Polyaniline/PbS Core-Shell Nano/Microcomposite and Its Application for Photocatalytic H2 Electrogeneration from H2O. Sci. Rep. 2018, 8, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, H.S.H.; Rabia, M.; Zhou, X.G.; Qin, X.S.; Khabiri, G.; Shaban, M.; Younus, H.A.; Taha, S.; Hu, Z.Y.; Liu, J.; et al. Phase-Junction Ag/TiO2 Nanocomposite as Photocathode for H2 Generation. J. Mater. Sci. Technol. 2021, 83, 179–187. [Google Scholar] [CrossRef]
- Rabia, M.; Shaban, M.; Jibali, B.M.; Abdelkhaliek, A.A. Effect of Annealing Temperature on the Photoactivity of ITO/VO 2 (M)/Au Film Electrodes for Water Splitting. J. Nanosci. Nanotechnol. 2020, 20, 4120–4130. [Google Scholar] [CrossRef] [PubMed]
- Rabia, M.; Mohamed, S.H.; Zhao, H.; Shaban, M.; Lei, Y.; Ahmed, A.M. TiO2/TiOxNY Hollow Mushrooms-like Nanocomposite Photoanode for Hydrogen Electrogeneration. J. Porous Mater. 2019, 27, 133–139. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yang, W.; Leng, B.; Niu, P.; Jiang, X.; Liu, B. High-Performance Flexible Ultraviolet Photodetectors Based on AZO/ZnO/PVK/PEDOT:PSS Heterostructures Integrated on Human Hair. ACS Appl. Mater. Interfaces 2019, 11, 24459–24467. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.C.; Kim, K.H.; Hwang, M.S.; Park, J.S.; Lee, J.M.; So, J.P.; Choi, J.H.; Kwon, S.H.; Barrelet, C.J.; et al. Photon-Triggered Nanowire Transistors. Nat. Nanotechnol. 2017, 12, 963–968. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Q.; Liu, B.; Yang, W.; Li, J.; Niu, P.; Jiang, X. Giant UV Photoresponse of a GaN Nanowire Photodetector through Effective Pt Nanoparticle Coupling. J. Mater. Chem. C 2017, 5, 4319–4326. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, C.; Chen, X.; Jin, J.; Li, H.; Song, H.; Dai, Q. Considerably Enhanced Perovskite Solar Cells via the Introduction of Metallic Nanostructures. J. Mater. Chem. A 2017, 5, 6515–6521. [Google Scholar] [CrossRef]
- Samson, O.; Adeeko, T.O.; Makama, E.K. Synthesis and Optical Characterization of Silver Nanoparticles (Ag-NPs) Thin Films (TFs) Prepared by Silar Technique. Int. J. Curr. Res. Acad. Rev. 2017, 5, 15–24. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Shin, Y.; Aroh, K.; Ehrman, S. Copper Oxide Photocathodes Prepared by a Solution Based Process. Int. J. Hydrogen Energy 2012, 37, 8232–8239. [Google Scholar] [CrossRef]
- Altowyan, A.S.; Shaban, M.; Gamel, A.; Gamal, A.; Ali, M.; Rabia, M. High-Performance PH Sensor Electrodes Based on a Hexagonal Pt Nanoparticle Array-Coated Nanoporous Alumina Membrane. Materials 2022, 15, 6515. [Google Scholar] [CrossRef] [PubMed]
- Almohammedi, A.; Shaban, M.; Mostafa, H.; Rabia, M. Nanoporous TiN/TiO2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. Nanomaterials 2021, 11, 2617. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Prakash, R.; Kumar, V. A Novel Yellowish White Dy3+ Activated α-Al2O3 Phosphor: Photoluminescence and Optical Studies. Funct. Mater. Lett. 2015, 8, 1550061. [Google Scholar] [CrossRef]
- Priyadharshini, R.I.; Prasannaraj, G.; Geetha, N.; Venkatachalam, P. Microwave-Mediated Extracellular Synthesis of Metallic Silver and Zinc Oxide Nanoparticles Using Macro-Algae (Gracilaria Edulis) Extracts and Its Anticancer Activity against Human PC3 Cell Lines. Appl. Biochem. Biotechnol. 2014, 174, 2777–2790. [Google Scholar] [CrossRef]
- Meng, Y. A Sustainable Approach to Fabricating Ag Nanoparticles/PVA Hybrid Nanofiber and Its Catalytic Activity. Nanomaterials 2015, 5, 1124–1135. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, S.; Esterle, A.; Sharma, N.C.; Sahi, S.V. Yucca-Derived Synthesis of Gold Nanomaterial and Their Catalytic Potential. Nanoscale Res. Lett. 2014, 9, 627. [Google Scholar] [CrossRef] [Green Version]
- Sneha, K.; Sathishkumar, M.; Kim, S.; Yun, Y.S. Counter Ions and Temperature Incorporated Tailoring of Biogenic Gold Nanoparticles. Process Biochem. 2010, 45, 1450–1458. [Google Scholar] [CrossRef]
- Ananth, A.; Mok, Y.S. Dielectric Barrier Discharge (DBD) Plasma Assisted Synthesis of Ag2O Nanomaterials and Ag2O/RuO2 Nanocomposites. Nanomaterials 2016, 6, 42. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Sun, W.; Yang, W.; Li, Q.; Shang, J.K. Post-Illumination Activity of SnO2 Nanoparticle-Decorated Cu2O Nanocubes by H2O2 Production in Dark from Photocatalytic “Memory”. Sci. Rep. 2016, 6, 20878. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Smith, J.G.; Jain, P.K. Harvesting Multiple Electron–Hole Pairs Generated through Plasmonic Excitation of Au Nanoparticles. Nat. Chem. 2018, 10, 763–769. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Shaban, M.; Aly, A.H.; Ahmed, A.M.; Rabia, M. Preparation and Characterization of a High-Efficiency Photoelectric Detector Composed of Hexagonal Al2O3/TiO2/TiN/Au Nanoporous Array. Materials Science in Semiconductor Processing 2022, 139, 106348. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shaban, M. Nanoporous Chromium Thin Film for Active Detection of Toxic Heavy Metals Traces Using Surface-Enhanced Raman Spectroscopy. Mater. Res. Express 2020, 7, 015084. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Abdelazeez, A.A.A.; Alzaid, M.; Shaban, M.; Mohamed, S.H.; Hoex, B.; Hajjiah, A.; Rabia, M. Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes. Materials 2022, 15, 1489. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Z. Study on Light Intensity in the Process of Photocatalytic Degradation of Indoor Gaseous Formaldehyde for Saving Energy. Energy Convers. Manag. 2007, 48, 882–889. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. Electropolymerization of M-Toluidin on Platinum Electrode from Aqueous Acidic Solution and Character of the Obtained Polymer. Adv. Polym. Technol. 2018, 37, 126–136. [Google Scholar] [CrossRef]
- Rabia, M.; Hadia, N.M.A.; Farid, O.M.; Abdelazeez, A.A.A.; Mohamed, S.H.; Shaban, M. Poly(m-Toluidine)/Rolled Graphene Oxide Nanocomposite Photocathode for Hydrogen Generation from Wastewater. Int. J. Energy Res. 2022, 46, 11943–11956. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. M-Toluidine Polymer Film Coated Platinum Electrode as a PH Sensor by Potentiometric Methods. Sens. Lett. 2015, 13, 961–966. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. A High-Sensitivity Potentiometric Mercuric Ion Sensor Based on m-Toluidine Films. IEEE Sens. J. 2016, 16, 1541–1548. [Google Scholar] [CrossRef]
- Ragupathi, V.; Raja, M.A.; Panigrahi, P.; Ganapathi Subramaniam, N. CuO/g-C3N4 Nanocomposite as Promising Photocatalyst for Photoelectrochemical Water Splitting. Optik 2020, 208, 164569. [Google Scholar] [CrossRef]
- Masudy-Panah, S.; Moakhar, R.S.; Chua, C.S.; Tan, H.R.; Wong, T.I.; Chi, D.; Dalapati, G.K. Nanocrystal Engineering of Sputter-Grown CuO Photocathode for Visible-Light-Driven Electrochemical Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 1206–1213. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, M.; Sun, R.; Long, G.; Liu, Y.; Zhao, W. Enhanced Hydrogen Evolution from CuOx-C/TiO2 with Multiple Electron Transport Pathways. PLoS ONE 2019, 14, e0215339. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, X.; Li, R.; Zhao, Y.; Wang, X.; Liu, X.; Jiao, H. Copper Oxide Nanowires for Efficient Photoelectrochemical Water Splitting. Appl. Catal. B Environ. 2019, 240, 1–8. [Google Scholar] [CrossRef]
- Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H.; Mi, Z.; Vomiero, A.; Rosei, F. Near-Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar-Driven Hydrogen Production. Adv. Sci. 2016, 3, 1500345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baran Aydin, E. Fabrication and Characterization of CuO Nanostructures: Applications in Electrocatalytic Hydrogen Production. Çukurova Univ. J. Fac. Eng. Archit. 2020, 35, 127–138. [Google Scholar]
- Ebaid, M.; Kang, J.-H.; Ryu, S.-W. Controlled Synthesis of GaN-Based Nanowires for Photoelectrochemical Water Splitting Applications. Semicond. Sci. Technol. 2016, 32, 013001. [Google Scholar] [CrossRef]
- Sherman, B.D.; Ashford, D.L.; Lapides, A.M.; Sheridan, M.V.; Wee, K.-R.; Meyer, T.J. Light-Driven Water Splitting with a Molecular Electroassembly-Based Core/Shell Photoanode. J. Phys. Chem. Lett. 2015, 6, 3213–3217. [Google Scholar] [CrossRef]
- Uchiyama, H.; Isobe, K.; Kozuka, H. Preparation of Porous CuO Films from Cu(NO3)2 Aqueous Solutions Containing Poly(Vinylpyrrolidone) and Their Photocathodic Properties. RSC Adv. 2017, 7, 18014–18018. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Karuturi, S.K.; Chen, H.; Wang, D.; Ager, J.W.; Simonov, A.N.; Tricoli, A. Enhancement of the Photoelectrochemical Water Splitting by Perovskite BiFeO3 via Interfacial Engineering. Sol. Energy 2020, 202, 198–203. [Google Scholar] [CrossRef]
- Li, Z.; Feng, S.; Liu, S.; Li, X.; Wang, L.; Lu, W. A Three-Dimensional Interconnected Hierarchical FeOOH/TiO2 /ZnO Nanostructural Photoanode for Enhancing the Performance of Photoelectrochemical Water Oxidation. Nanoscale 2015, 7, 19178–19183. [Google Scholar] [CrossRef]
- Naldoni, A.; Guler, U.; Wang, Z.; Marelli, M.; Malara, F.; Meng, X.; Besteiro, L.V.; Govorov, A.O.; Kildishev, A.V.; Boltasseva, A.; et al. Broadband Hot-Electron Collection for Solar Water Splitting with Plasmonic Titanium Nitride. Adv. Opt. Mater. 2017, 5, 1601031. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cao, D.; Wen, L.; Xu, R.; Obergfell, M.; Mi, Y.; Zhan, Z.; Nasori, N.; Demsar, J.; Lei, Y. Manipulation of Charge Transfer and Transport in Plasmonic-Ferroelectric Hybrids for Photoelectrochemical Applications. Nat. Commun. 2016, 7, 10348. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.; Kumar, S.; Thomas, S.R.; Pickering, H.; Fermin, D.J.; Eslava, S. PrFeO3 Photocathodes Prepared through Spray Pyrolysis. ChemElectroChem 2020, 7, 1365–1372. [Google Scholar] [CrossRef]
- Modibane, K.D.; Waleng, N.J.; Ramohlola, K.E.; Maponya, T.C.; Monama, G.R.; Makgopa, K.; Hato, M.J. Poly(3-Aminobenzoic Acid) Decorated with Cobalt Zeolitic Benzimidazolate Framework for Electrochemical Production of Clean Hydrogen. Polymers 2020, 12, 1581. [Google Scholar] [CrossRef] [PubMed]
Photoelectrode | Electrolyte | Jph (mA/cm2) | IPCE % (390 nm) |
---|---|---|---|
g-C3N4-CuO [39] | NaOH | 0.01 | - |
CuO thin films [40] | Na2SO4 | 0.96 | 3.1 |
CuO-C/TiO2 [41] | glycerol | 0.012 | |
CuO nanowire [42] | Na2SO4 | 1.5 | - |
TiO2/CdS/PbS [43] | Na2S/Na2S2O3 | 2 | 4 |
CuO nanostructure [44] | KOH | 1 | - |
GaN [45] | HBr | 0.6 | 8 |
SnO2/TiO2 [46] | Na2S2O3 | 0.4 | - |
CuO nanocrystals [47] | Na2SO4 | 1.1 | 8.7 |
BiFeO3 [48] | NaOH | 0.1 | 0.21 |
ZnO/TiO2/FeOOH [49] | Na2S2O3 | 1.59 | - |
TiN-TiO2 [50] | NaOH | 3.0 × 10−4 | 0.03 |
Au/PbS/Ro-GO/PANI [10] | Na2S2O3 | 1.1 | 10 |
Au/Pb(Zr, Ti)O3 [51] | NaOH | 0.06 | 0.2 |
PrFeO [52] | Na2SO4 | 0.130 | - |
Poly(3-aminobenzoic acid) frame [53] | H2SO4 | 0.08 | - |
PANI/Ag2O/Ag Nanocomposite [53] | Sewage water | 0.012 | - |
Present work (Ag2O-Ag/Au/Al2O3) | Sewage water | 9.5 | 29.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, H.; Ahmed, A.M.; Shaban, M.; Abdel-Khaliek, A.A.; Hasan, F.; Mohammed Alzahrani, F.; Rabia, M. Design and Characterization of Nanostructured Ag2O-Ag/Au Based on Al2O3 Template Membrane for Photoelectrochemical Water Splitting and Hydrogen Generation. Photonics 2022, 9, 968. https://doi.org/10.3390/photonics9120968
Mostafa H, Ahmed AM, Shaban M, Abdel-Khaliek AA, Hasan F, Mohammed Alzahrani F, Rabia M. Design and Characterization of Nanostructured Ag2O-Ag/Au Based on Al2O3 Template Membrane for Photoelectrochemical Water Splitting and Hydrogen Generation. Photonics. 2022; 9(12):968. https://doi.org/10.3390/photonics9120968
Chicago/Turabian StyleMostafa, Huda, Ashour M. Ahmed, Mohamed Shaban, Ahmed A. Abdel-Khaliek, Fuead Hasan, Fatimah Mohammed Alzahrani, and Mohamed Rabia. 2022. "Design and Characterization of Nanostructured Ag2O-Ag/Au Based on Al2O3 Template Membrane for Photoelectrochemical Water Splitting and Hydrogen Generation" Photonics 9, no. 12: 968. https://doi.org/10.3390/photonics9120968
APA StyleMostafa, H., Ahmed, A. M., Shaban, M., Abdel-Khaliek, A. A., Hasan, F., Mohammed Alzahrani, F., & Rabia, M. (2022). Design and Characterization of Nanostructured Ag2O-Ag/Au Based on Al2O3 Template Membrane for Photoelectrochemical Water Splitting and Hydrogen Generation. Photonics, 9(12), 968. https://doi.org/10.3390/photonics9120968