Airborne Sound Sensing System Based on DAS and Ultra-Simple Transducer Structure
Abstract
:1. Introduction
2. Principle and Experiment Setup
3. Results
3.1. Anti-Fading Effect of the DAS
3.2. Fabricate of Microphone
3.3. The Performance of DAS and Handmade Microphone
3.4. The Simulation Sound of Valve Acquisition by the Handmade Microphone
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Li, H.; Fan, C.; Yan, B.; Chen, J.; Yan, Z.; Sun, Q. Review of a Specialty Fiber for Distributed Acoustic Sensing Technology. Photonics 2022, 9, 277. [Google Scholar] [CrossRef]
- Ashry, I.; Mao, Y.; Wang, B.; Hveding, F.; Bukhamsin, A.; Ng, T.K.; Ooi, B.S. A Review of Distributed Fiber–Optic Sensing in the Oil and Gas Industry. J. Light. Technol. 2022, 40, 1407–1431. [Google Scholar] [CrossRef]
- Lu, X.; Krebber, K. Phase Error Analysis and Unwrapping Error Suppression in Phase-Sensitive Optical Time Domain Reflectometry. Opt. Express 2022, 30, 6934–6948. [Google Scholar] [CrossRef] [PubMed]
- Muggleton, J.M.; Hunt, R.; Rustighi, E.; Lees, G.; Pearce, A. Gas Pipeline Leak Noise Measurements Using Optical Fibre Distributed Acoustic Sensing. J. Nat. Gas Sci. Eng. 2020, 78, 103293. [Google Scholar] [CrossRef]
- Williams, E.F.; Fernández-Ruiz, M.R.; Magalhaes, R.; Vanthillo, R.; Zhan, Z.; González-Herráez, M.; Martins, H.F. Distributed Sensing of Microseisms and Teleseisms with Submarine Dark Fibers. Nat. Commun. 2019, 10, 5778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martuganova, E.; Stiller, M.; Norden, B.; Henninges, J.; Krawczyk, C.M. 3D Deep Geothermal Reservoir Imaging with Wireline Distributed Acoustic Sensing in Two Boreholes. Solid Earth 2022, 13, 1291–1307. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Wang, M.; Zhong, Y.; Peng, F. Fiber Distributed Acoustic Sensing Using Convolutional Long Short-Term Memory Network: A Field Test on High-Speed Railway Intrusion Detection. Opt. Express 2020, 28, 2925. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Xu, C.; Ye, W.; Bao, M. Self-Learning Filtering Method Based on Classification Error in Distributed Fiber Optic System. IEEE Sens. J. 2019, 19, 8929–8933. [Google Scholar] [CrossRef]
- Chambers, K. Using DAS to Investigate Traffic Patterns at Brady Hot Springs, Nevada, USA. Lead. Edge 2020, 39, 819–827. [Google Scholar] [CrossRef]
- Xu, S.; Qin, Z.; Zhang, W.; Xiong, X. Monitoring Vehicles on Highway by Dual-Channel φ-OTDR. Appl. Sci. 2020, 10, 1839. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, B.; Ye, Q.; Cai, H. Recent Progress in Distributed Fiber Acoustic Sensing with Φ-OTDR. Sensors 2020, 20, 6594. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, H.; Lu, C. High-Sensitivity Distributed Relative Salinity Sensor Based on Frequency-Scanning φ-OTDR. Opt. Express 2022, 30, 22860. [Google Scholar] [CrossRef] [PubMed]
- Ogden, H.M.; Murray, M.J.; Murray, J.B.; Kirkendall, C.; Redding, B. Frequency Multiplexed Coherent Φ-OTDR. Sci. Rep. 2021, 11, 17921. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Thomas, P.J. Numerical Modeling of Fcy OTDR Sensing Using a Refractive Index Perturbation Approach. J. Light. Technol. 2020, 38, 974–980. [Google Scholar] [CrossRef]
- Hocker, G.B. Fiber-Optic Sensing of Pressure and Temperature. Appl. Opt. 1979, 18, 1445–1448. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, Q.; Liu, T.; Fan, C.; He, T.; Yan, Z.; Liu, D.; Shum, P.P. Ultra-High Sensitive Quasi-Distributed Acoustic Sensor Based on Coherent OTDR and Cylindrical Transducer. J. Light. Technol. 2020, 38, 929–938. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, J.; Li, Q.; Zhang, Z.; Heng, X.; Yang, Z. Distributed Fiber Voice Sensor Based on Phase-Sensitive Optical Time-Domain Reflectometry. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Zheng, H.; Huang, J.; Yin, G.; Zhu, T.; Qiu, F.; Huang, X.; Qu, D.; Bai, Y. 80 Km Fading Free Phase-Sensitive Reflectometry Based on Multi-Carrier NLFM Pulse Without Distributed Amplification. J. Light. Technol. 2019, 37, 4748–4754. [Google Scholar] [CrossRef]
- Martins, H.F.; Martin-Lopez, S.; Corredera, P.; Salgado, P.; Frazão, O.; González-Herráez, M. Modulation Instability-Induced Fading in Phase-Sensitive Optical Time-Domain Reflectometry. Opt. Lett. 2013, 38, 872. [Google Scholar] [CrossRef] [PubMed]
- Purohit, H.; Tanabe, R.; Ichige, K.; Endo, T.; Nikaido, Y.; Suefusa, K.; Kawaguchi, Y. MIMII Dataset: Sound Dataset for Malfunctioning Industrial Machine Investigation and Inspection. arXiv 2019, arXiv:1909.09347. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Hu, M.; Jiang, G.; Zheng, X.; Peng, F. Airborne Sound Sensing System Based on DAS and Ultra-Simple Transducer Structure. Photonics 2022, 9, 975. https://doi.org/10.3390/photonics9120975
Tang J, Hu M, Jiang G, Zheng X, Peng F. Airborne Sound Sensing System Based on DAS and Ultra-Simple Transducer Structure. Photonics. 2022; 9(12):975. https://doi.org/10.3390/photonics9120975
Chicago/Turabian StyleTang, Jianfang, Minghao Hu, Gan Jiang, Xuanyu Zheng, and Fei Peng. 2022. "Airborne Sound Sensing System Based on DAS and Ultra-Simple Transducer Structure" Photonics 9, no. 12: 975. https://doi.org/10.3390/photonics9120975
APA StyleTang, J., Hu, M., Jiang, G., Zheng, X., & Peng, F. (2022). Airborne Sound Sensing System Based on DAS and Ultra-Simple Transducer Structure. Photonics, 9(12), 975. https://doi.org/10.3390/photonics9120975