Broadband Near-Field Near-Infrared Spectroscopy and Imaging with a Laser-Driven Light Source
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Laser-Driven Light Source
2.2. Home-Built Set-Up and Working Mechanism
3. Experimental Results and Analysis
3.1. Near-Field Imaging
3.2. Near-Field Spectroscopy
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keilmann, F.; van der Weide, D.; Eickelkamp, T.; Merz, R.; Stöckle, D. Extreme sub-wavelength resolution with a scanning radio-frequency transmission microscope. Opt. Commun. 1996, 129, 15–18. [Google Scholar] [CrossRef]
- Knoll, B.; Keilmann, F. Mid-infrared scanning near-field optical microscope resolves 30 nm. J. Microsc. 1999, 194, 512–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubner, T.; Hillenbrand, R.; Keilmann, F. Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Appl. Phys. Lett. 2004, 85, 5064–5066. [Google Scholar] [CrossRef]
- Huth, F.; Schnell, M.; Wittborn, J.; Ocelic, N.; Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 2011, 10, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Vakulenko, A.; Kiriushechkina, S.; Wang, M.; Li, M.; Zhirihin, D.; Ni, X.; Guddala, S.; Korobkin, D.; Alù, A.; Khanikaev, A.B. Metasurfaces: Near-Field Characterization of Higher-Order Topological Photonic States at Optical Frequencies (Adv. Mater. 18/2021). Adv. Mater. 2021, 33, 2170135. [Google Scholar] [CrossRef]
- Hu, D.; Chen, K.; Chen, X.; Guo, X.; Liu, M.; Dai, Q. Tunable Modal Birefringence in a Low-Loss Van Der Waals Waveguide. Adv. Mater. 2019, 31, e1807788. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Luan, Y.; Scott, M.E.; Yan, J.; Mandrus, D.G.; Xu, X.; Fei, Z. Imaging exciton–polariton transport in MoSe2 waveguides. Nat. Photon 2017, 11, 356–360. [Google Scholar] [CrossRef]
- Berweger, S.; Nguyen, D.M.; Muller, E.A.; Bechtel, H.A.; Perkins, T.T.; Raschke, M.B. Nano-Chemical Infrared Imaging of Membrane Proteins in Lipid Bilayers. J. Am. Chem. Soc. 2013, 135, 18292–18295. [Google Scholar] [CrossRef] [PubMed]
- Nan, C.; Yue, W.; Tao, L.; Yang, X. Fourier transform infrared nano-spectroscopy: Mechanism and applications. Appl. Spectrosc. Rev. 2021, 56, 531–552. [Google Scholar] [CrossRef]
- Gamage, S.; Howard, M.; Makita, H.; Cross, B.; Hastings, G.; Luo, M.; Abate, Y. Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging. PLoS ONE 2018, 13, e0199112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechtel, H.A.; Muller, E.A.; Olmon, R.L.; Martin, M.C.; Raschke, M.B. Ultrabroadband infrared nanospectroscopic imaging. Proc. Natl. Acad. Sci. USA 2014, 111, 7191–7196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermann, P.; Hoehl, A.; Ulrich, G.; Fleischmann, C.; Hermelink, A.; Kästner, B.; Patoka, P.; Hornemann, A.; Beckhoff, B.; Rühl, E.; et al. Characterization of semiconductor materials using synchrotron radiation-based near-field infrared microscopy and nano-FTIR spectroscopy. Opt. Express 2014, 22, 17948–17958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lahneman, D.J.; Huffman, T.J.; Xu, P.; Wang, S.L.; Grogan, T.; Qazilbash, M.M. Broadband near-field infrared spectroscopy with a high temperature plasma light source. Opt. Express 2017, 25, 20421–20430. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Jakob, D.S.; Horne, S.; Mittel, H.; Osechinskiy, S.; Phillips, C.; Walker, G.C.; Su, C.; Xu, X.G. Ultrabroadband Nanospectroscopy with a Laser-Driven Plasma Source. ACS Photon 2018, 5, 1467–1475. [Google Scholar] [CrossRef]
- Patoka, P.; Ulrich, G.; Nguyen, A.E.; Bartels, L.; Dowben, P.A.; Turkowski, V.; Rahman, T.S.; Hermann, P.; Kästner, B.; Hoehl, A.; et al. Nanoscale plasmonic phenomena in CVD-grown MoS 2 monolayer revealed by ultra-broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy. Opt. Express 2016, 24, 1154–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, S.; Fei, Z.; Ma, Q.; Rodin, A.S.; Wagner, M.; McLeod, A.S.; Liu, M.K.; Gannett, W.; Regan, W.; Watanabe, K.; et al. Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride. Science 2014, 343, 1125–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kästner, B.; Johnson, C.M.; Hermann, P.; Kruskopf, M.; Pierz, K.; Hoehl, A.; Hornemann, A.; Ulrich, G.; Fehmel, J.; Patoka, P.; et al. Infrared Nanospectroscopy of Phospholipid and Surfactin Monolayer Domains. ACS Omega 2018, 3, 4141–4147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amenabar, I.; Poly, S.; Goikoetxea, M.; Nuansing, W.; Lasch, P.; Hillenbrand, R. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy. Nat. Commun. 2017, 8, 14402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanic, V.; Maia, F.C.B.; Freitas, R.D.O.; Montoro, F.E.; Evans-Lutterodt, K. The chemical fingerprint of hair melanosomes by infrared nano-spectroscopy. Nanoscale 2018, 10, 14245–14253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyns, M.; Primpke, S.; Gerdts, G. Library based identification and characterisation of polymers with nano-FTIR and IR-sSNOM imaging. Anal. Methods 2019, 11, 5195–5202. [Google Scholar] [CrossRef] [Green Version]
- Arieli, U.; Mrejen, M.; Suchowski, H. Broadband coherent hyperspectral near-field imaging of plasmonic nanostructures. Opt. Express 2019, 27, 9815–9820. [Google Scholar] [CrossRef] [PubMed]
- Kaltenecker, K.J.; Rao, D.S.S.; Rasmussen, M.; Lassen, H.B.; Kelleher, E.J.; Krauss, E.; Hecht, B.; Mortensen, N.A.; Grüner-Nielsen, L.; Markos, C.; et al. Near-infrared nanospectroscopy using a low-noise supercontinuum source. APL Photonics 2021, 6, 066106. [Google Scholar] [CrossRef]
- He, X.-T.; Li, M.-Y.; Qiu, H.-Y.; Ruan, W.-S.; Zhou, L.-D.; Liu, L.; Chen, X.-D.; Chen, W.-J.; Zhao, F.-L.; Dong, J.-W. In-plane excitation of a topological nanophotonic corner state at telecom wavelengths in a cross-coupled cavity. Photon Res. 2021, 9, 1423. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.-C.; Chen, Y.; Zhu, X.; Liu, S.-D.; Lei, D.Y.; Duan, H. Pronounced Fano Resonance in Single Gold Split Nanodisks with 15 nm Split Gaps for Intensive Second Harmonic Generation. ACS Nano 2016, 10, 11105–11114. [Google Scholar] [CrossRef] [PubMed]
- Eda, G.; Maier, S.A. Two-Dimensional Crystals: Managing Light for Optoelectronics. ACS Nano 2013, 7, 5660–5665. [Google Scholar] [CrossRef]
- Xu, H.; Ren, A.; Wu, J.; Wang, Z. Recent Advances in 2D MXenes for Photodetection. Adv. Funct. Mater. 2020, 30. [Google Scholar] [CrossRef]
- Yang, X.; Zhai, F.; Hu, H.; Hu, D.; Liu, R.; Zhang, S.; Sun, M.; Sun, Z.; Chen, J.; Dai, Q. Far-Field Spectroscopy and Near-Field Optical Imaging of Coupled Plasmon-Phonon Polaritons in 2D van der Waals Heterostructures. Adv. Mater. 2016, 28, 2931–2938. [Google Scholar] [CrossRef]
- Koperski, M.; Molas, M.; Arora, A.; Nogajewski, K.; Slobodeniuk, A.; Faugeras, C.; Potemski, M. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles. Nanophotonics 2017, 6, 1289–1308. [Google Scholar] [CrossRef]
- Knoll, B.; Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 2000, 182, 321–328. [Google Scholar] [CrossRef]
- Nunley, T.N.; Fernando, N.S.; Samarasingha, N.; Moya, J.M.; Nelson, C.M.; Medina, A.A.; Zollner, S. Optical constants of germanium and thermally grown germanium dioxide from 0.5 to 6.6 eV via a multisample ellipsometry investigation. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. 2016, 34, 061205. [Google Scholar] [CrossRef]
- Zhu, H.; Blackborow, P. Understanding Radiance (Brightness), Irradiance and Radiant Flux. Available online: www.energetiq.com/technote-understanding-radiance-brightness-irradiance-radiant-flux (accessed on 24 April 2021).
- Lahneman, D.J.; Qazilbash, M.M. Hyperspectral infrared imaging of surface phonon-polaritons in SrTiO3. Phys. Rev. B 2021, 104, 235433. [Google Scholar] [CrossRef]
- McArdle, P.; Lahneman, D.J.; Biswas, A.; Keilmann, F.; Qazilbash, M.M. Near-field infrared nanospectroscopy of surface phonon-polariton resonances. Phys. Rev. Res. 2020, 2, 023272. [Google Scholar] [CrossRef]
- Nan, C.H.E.N.; Yue, W.A.N.G.; Wang, B.Y.; Yang, X.I.A.; Tao, L.I.U. Research on numerical model of nano-FTIR system based on COMSOL. Spectrosc. Spectr. Anal. 2021, 41, 1125. [Google Scholar]
- Xu, X.G.; Rang, M.; Craig, I.M.; Raschke, M.B. Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity. J. Phys. Chem. Lett. 2012, 3, 1836–1841. [Google Scholar] [CrossRef] [PubMed]
- Khatib, O.; Bechtel, H.A.; Martin, M.C.; Raschke, M.B.; Carr, G.L. Far Infrared Synchrotron Near-Field Nanoimaging and Nanospectroscopy. ACS Photon 2018, 5, 2773–2779. [Google Scholar] [CrossRef]
- Autore, M.; Mester, L.; Goikoetxea, M.; Hillenbrand, R. Substrate matters: Surface-polariton enhanced infrared nanospectroscopy of molecular vibrations. Nano Lett. 2019, 19, 8066–8073. [Google Scholar] [CrossRef]
- Ozawa, T.; Price, H.M.; Amo, A.; Goldman, N.; Hafezi, M.; Lu, L.; Rechtsman, M.C.; Schuster, D.; Simon, J.; Zilberberg, O.; et al. Topological photonics. Rev. Mod. Phys. 2019, 91, 015006. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Bauer, T.; Barczyk, R.; Verhagen, E.; Kuipers, L. Direct quantification of topological protection in symmetry-protected photonic edge states at telecom wavelengths. Light Sci. Appl. 2021, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Centrone, A. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. Annu. Rev. Anal. Chem. 2015, 8, 101–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, C.; Yue, W.; Yang, X.; Tao, L. Broadband Near-Field Near-Infrared Spectroscopy and Imaging with a Laser-Driven Light Source. Photonics 2022, 9, 97. https://doi.org/10.3390/photonics9020097
Nan C, Yue W, Yang X, Tao L. Broadband Near-Field Near-Infrared Spectroscopy and Imaging with a Laser-Driven Light Source. Photonics. 2022; 9(2):97. https://doi.org/10.3390/photonics9020097
Chicago/Turabian StyleNan, Chen, Wang Yue, Xia Yang, and Liu Tao. 2022. "Broadband Near-Field Near-Infrared Spectroscopy and Imaging with a Laser-Driven Light Source" Photonics 9, no. 2: 97. https://doi.org/10.3390/photonics9020097
APA StyleNan, C., Yue, W., Yang, X., & Tao, L. (2022). Broadband Near-Field Near-Infrared Spectroscopy and Imaging with a Laser-Driven Light Source. Photonics, 9(2), 97. https://doi.org/10.3390/photonics9020097