Characterizations and Use of Recycled Optical Components for Polarizing Phase-Shifting Interferometry Applications †
Abstract
:1. Introduction
2. Recovery of Optical Components from Electronic Waste
3. Grating Interferometry
3.1. Pattern Replication with 2D Gratings
3.2. Coupled 4f Imaging System
3.3. Optical Phase Recovery Algorithm
4. Experimental Setup
5. Results
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Azapagic, A.; Perdan, S. Indicators of sustainable development for industry: A general framework. Trans IChemE 2000, 78, 243–261. [Google Scholar] [CrossRef]
- Barbier, E.B. The concept of sustainable economic development. Environ. Conserv. 1987, 14, 101. [Google Scholar] [CrossRef]
- Kiddee, P.; Pradhan, J.K.; Mandal, S.; Biswas, J.K.; Sarkar, B. An overview of treatment technologies of E-waste, Chapter 1. In Handbook of Electronic Waste Management International Best Practices and Case Studies; Elsevier: Cambridge, MA, USA, 2019; pp. 1–18. [Google Scholar]
- Crane, R. Interference Phase Measurement. Appl. Opt. 1969, 8, 538. [Google Scholar]
- Bruning, J.H.; Herriott, D.R.; Gallagher, J.E.; Rosenfeld, D.P.; White, A.D.; Brangaccio, D.J. Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses. Appl. Opt. 1974, 13, 2693. [Google Scholar] [CrossRef] [PubMed]
- Bruning, J.H. Fringe Scanning Interferometers, in Optical Shop Testing; Malacara, D., Ed.; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Hardy, J.; Feinleib, J.; Wyant, J.C. Real time phase correction of optical imaging systems, OSA Topical Meeting on Opt. In Proceedings of the Propagation through Turbulence, Boulder, CO, Canada, 9–11 July 1974. [Google Scholar]
- Wyant, J.C. Use of an ac Heterodyne Lateral Shear Interferometer with Real-Time Wavefront Correction Systems. Appl. Opt. 1975, 14, 2622. [Google Scholar] [CrossRef]
- Wyant, J.C. Dynamic Interferometry. Opt. Photonics News 2003, 14, 36–41. [Google Scholar] [CrossRef]
- Morris, M.N.; Millerd, J.; Brock, N.; Hayes, J.; Saif, B. Dynamic Phase-Shifting Electronic Speckle Pattern Interferometer. In Proceedings of the Optical Manufacturing and Testing VI, San Diego, CA, USA, 18 August 2005. [Google Scholar]
- Serrano-Garcia, D.I.; Toto-Arellano, N.I.; García, A.M.; Álvarez, J.A.R.; Téllez-Quiñones, A.; Rodríguez-Zurita, G. Simultaneous phase-shifting cyclic interferometer for generation of lateral and radial shear. Rev. Mex. Fis. 2011, 57, 255–258. [Google Scholar]
- Serrano-García, D.I.; Toto-Arellano, N.I.; Martínez-García, A.; Zurita, G.R. Radial slope measurement of dynamic transparent samples, J. Opt. 2012, 14, 045706. [Google Scholar] [CrossRef]
- Islas, J.M.I.; Flores-Muñoz, V.H.; Serrano-García, D.-I.; Serrano-Mendoza, J.G.; Sánchez, M.D.; Barraza, A.G. Noel-Ivan Toto-Arellano, Development of a dynamic interferometer using recycled components based on polarization phase shifting techniques. Opt. Laser Technol. 2020, 123, 105915. [Google Scholar] [CrossRef]
- Rodriguez-Zurita, G.; Meneses-Fabian, C.; Toto-Arellano, N.I.; Vázquez-Castillo, J.F.; Robledo-Sánchez, C. One-shot phase-shifting phase-grating interferometry with modulation of polarization: Case of four interferograms. Opt. Express 2008, 16, 7806–7817. [Google Scholar] [PubMed]
- Toto-Arellano, N.I. 4D measurements of biological and synthetic structures using a dynamic interferometer. J. Mod. Opt. 2017, 64 (Suppl. 4), S20–S29. [Google Scholar] [CrossRef] [Green Version]
- Shock, I.; Barbul, A.; Girshovitz, P.; Nevo, U.; Korenstein, R.; Shakeda, N.T. Optical phase nanoscopy in red blood cells using low-coherence spectroscopy. J. Biomed. Opt. 2012, 17, 101509. [Google Scholar] [CrossRef] [Green Version]
- Pham, H.; Ding, H.; Sobh, N.; Do, M.; Patel, S.; Popescu, G. Off-axis quantitative phase imaging processing using CUDA: Toward real-time applications. Biomed. Opt. Express 2011, 2, 1781–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.; Kim, K.; Jung, J.; Heo, J.; Cho, S.; Lee, S.; Chang, G.; Jo, Y.; Park, H.; Park, Y. Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors 2013, 13, 4170–4191. [Google Scholar] [CrossRef]
- Marquet, P.; Depeursinge, C.; Magistretti, P.J. Review of quantitative phase-digital holographic microscopy: Promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 2014, 1, 020901. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.K.; Depeursinge, C.; Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 2018, 12, 578–589. [Google Scholar] [CrossRef]
- Millerd, J.E.; Wyant, J.C. Simultaneous Phase-Shifting Fizeau Interferometer. U.S. Patent 7,057,738 B2, 6 June 2006. [Google Scholar]
- Kemper, B.; von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Appl. Opt. 2008, 47, A52–A61. [Google Scholar] [CrossRef] [PubMed]
- Myung, K.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar]
- Malacara, D. Optical Shop Testing, 3rd ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Hariharan, P. Basics of Interferometry; Elsevier Inc.: Cambridge, MA, USA, 2007. [Google Scholar]
- Hecht, E. Optics. (Pearson Education, 2016). Available online: https://www.pearson.com/us/higher-education/program/Hecht-Optics-5th-Edition/PGM45350.html (accessed on 1 February 2022).
- Serrano-García, D.I.; Rayas-Alvarez, J.A.; Arellano, N.I.T.; Rodriguez-Zurita, G.; Pérez, A.M. Adjustable-window grating interferometer based on a Mach-Zehnder configuration for phase profile measurements of transparent samples. Opt. Eng. 2012, 51, 055601. [Google Scholar] [CrossRef] [Green Version]
- Toto-Arellano, N.I.; Flores-Muñoz, V.H.; Lopez-Ortiz, B. Dynamic phase imaging of microscopic measurements using parallel interferograms generated from a cyclic shear interferometer. Opt. Express 2014, 22, 20185–20192. [Google Scholar] [CrossRef]
- Malacara, D.; Servin, M.; Malacara, Z. Phase Detection Algorithms in interferomgram Analysis for Optical Testing; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Servin, M.; Estrada, J.C.; Quiroga, J.A. The general theory of phase shifting algorithms. Opt. Express 2009, 17, 21867–21881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, D.; Kaufmann, G.H.; Galizzi, G.E. Unwrapping of interferometric phase-fringe maps by the discrete cosine transform. Appl. Opt. 1996, 35, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Ghiglia, D.C.; Romero, L.A. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. JOSA A 1994, 11, 107–117. [Google Scholar] [CrossRef]
- Vargas, J.; Quiroga, J.A.; Sorzano, C.O.S.; Estrada, J.C.; Carazo, J.M. Two-step interferometry by a regularized optical flow algorithm. Opt. Lett. 2011, 36, 3485–3487. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Yao, B.; Gao, P.; Min, J.; Han, J.; Yu, X.; Lei, M.; Yan, S.; Yang, Y.; Dan, D.; et al. Parallel on-axis phase-shifting holographic phase microscopy based on reflective point-diffraction interferometer with long-term stability. Appl. Opt. 2013, 52, 3484–3489. [Google Scholar] [CrossRef]
- Abdelsalam, D.G.; Yao, B.; Gao, P.; Min, J.; Guo, R. Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry. Appl. Opt. 2012, 51, 4891–4895. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Jeon, H.; Lim, S.; Hahn, J. Color Digital Holography Based on Generalized Phase-Shifting Algorithm with Monitoring Phase-Shift. Photonics 2021, 8, 241. [Google Scholar] [CrossRef]
- Gao, C.; Gao, Z.; Niu, Y.; Wang, X.; Zhao, J.; Deng, L. An Improved Large-Field Microscopic Speckle Interferometry System for Dynamic Displacement Measurement of MEMS. Photonics 2021, 8, 271. [Google Scholar] [CrossRef]
- Barcelata-Pinzón, A.; Álvarez-Tamayo, R.I.; Prieto-Cortés, P. A Real-Time Automated System for Dual-Aperture Common-Path Interferometer Phase-Shifting. Appl. Sci. 2021, 11, 7438. [Google Scholar] [CrossRef]
- Bello, V.; Simoni, A.; Merlo, S. Spectral Phase Shift Interferometry for Refractive Index Monitoring in Micro-Capillaries. Sensors 2020, 20, 1043. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.J.; Su, W.H. Phase-Shifting Projected Fringe Profilometry Using Binary-Encoded Patterns. Photonics 2021, 8, 362. [Google Scholar] [CrossRef]
- Quiroga, J.; Servin, M. Isotropic n-dimensional fringe pattern normalization. Opt. Commun. 2003, 224, 221–227. [Google Scholar] [CrossRef]
- Rivera, M.; Dalmau, O.; Gonzalez, A.; Hernandez-Lopez, F. Two-step fringe pattern analysis with a Gabor filter bank. Opt. Lasers Eng. 2016, 85, 29–37. [Google Scholar] [CrossRef]
- Toto-Arellano, N.I.; Serrano-Garcia, D.I.; Rodriguez-Zurita, G. Optical path difference measurements with a two-step parallel phase shifting interferometer based on a modifed Michelson configuration. Opt. Eng. 2017, 56, 094107. [Google Scholar] [CrossRef]
- Min, J.; Yao, B.; Gao, P.; Guo, R.; Zheng, J.; Ye, T. Parallel phase-shifting interferometry based on michelson-like architecture. Appl. Opt. 2010, 49, 6612–6616. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.F.; Davenport, M.A.; Takhar, D.; Laska, J.N.; Sun, T.; Kelly, K.F.; Baraniuk, R.G. Single-pixel imaging via compressive sampling. IEEE Signal Processing Mag. 2008, 25, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Arvidson, R.S.; Fischer, C.; Sawyer, D.S.; Scott, G.D.; Natelson, D.; Lüttge, A. Lateral Resolution Enhancement of Vertical Scanning Interferometry by Sub-Pixel Sampling. Microsc. Microanal. 2014, 20, 90–98. [Google Scholar] [CrossRef]
DVD Reader | Optical Component | Characteristics | Scale | |||
---|---|---|---|---|---|---|
Beam splitter | Polarizing | Non | ||||
Reflectivity | 60% | 5 mm × 5 mm | ||||
Transmittance | 40% | |||||
Lens | Focal | 5 mm | 3 mm diameter | |||
Thickness | 3 mm | |||||
Diffraction grating | Period 6.62 μm 3 mm × 3 mm | |||||
Mirror | Thickness | 3.0 mm | 10 mm × 20 mm | |||
Reflectance (normal incidence) | 92% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islas-Islas, J.M.; Reséndiz-López, G.; Ortega-Mendoza, J.G.; García-Lechuga, L.; Quiroz, A.; Serrano-García, D.-I.; Canales-Pacheco, B.; Toto-Arellano, N.-I. Characterizations and Use of Recycled Optical Components for Polarizing Phase-Shifting Interferometry Applications. Photonics 2022, 9, 125. https://doi.org/10.3390/photonics9030125
Islas-Islas JM, Reséndiz-López G, Ortega-Mendoza JG, García-Lechuga L, Quiroz A, Serrano-García D-I, Canales-Pacheco B, Toto-Arellano N-I. Characterizations and Use of Recycled Optical Components for Polarizing Phase-Shifting Interferometry Applications. Photonics. 2022; 9(3):125. https://doi.org/10.3390/photonics9030125
Chicago/Turabian StyleIslas-Islas, Juan M., Germán Reséndiz-López, José G. Ortega-Mendoza, Luis García-Lechuga, Adolfo Quiroz, David-Ignacio Serrano-García, Benito Canales-Pacheco, and Noel-Ivan Toto-Arellano. 2022. "Characterizations and Use of Recycled Optical Components for Polarizing Phase-Shifting Interferometry Applications" Photonics 9, no. 3: 125. https://doi.org/10.3390/photonics9030125
APA StyleIslas-Islas, J. M., Reséndiz-López, G., Ortega-Mendoza, J. G., García-Lechuga, L., Quiroz, A., Serrano-García, D. -I., Canales-Pacheco, B., & Toto-Arellano, N. -I. (2022). Characterizations and Use of Recycled Optical Components for Polarizing Phase-Shifting Interferometry Applications. Photonics, 9(3), 125. https://doi.org/10.3390/photonics9030125