Microwave Photonic Signal Generation in an Optically Injected Discrete Mode Semiconductor Laser
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results
4. Theoretical Model and Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, J. Microwave Photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Y. Microwave photonic radars. J. Light. Technol. 2020, 38, 5450–5484. [Google Scholar] [CrossRef]
- Nie, B.; Ruan, Y.; Yu, Y.; Guo, Q.; Xi, J.; Tong, J. Period-one microwave photonic sensing by a laser diode with optical feedback. J. Light. Technol. 2020, 38, 5423–5429. [Google Scholar] [CrossRef]
- William, J.; Shain, N.A.; Vickers, A.N.; Thomas, B.; Anne, S.; Jerome, M. Dual fluorescence-absorption deconvolution applied to extended-depth-of-field microscopy. Opt. Lett. 2017, 42, 4183–4186. [Google Scholar]
- Xu, C.; Zhou, L.; Zhou, J.Y.; Boggs, S. High frequency properties of shielded power cable-part 1: Overview of mechanisms. IEEE Electr. Insul. Mag. 2005, 21, 24–28. [Google Scholar]
- Carpintero, G.; Balakier, K.; Yang, Z.; Guzm’an, R.C.; Corradi, A.; Jimenez, A.; Kervella, G.; Fice, M.J.; Lamponi, M.; Chitoui, M.; et al. Microwave Photonic integrated circuits for millimeter-wave wireless communications. J. Light. Technol. 2014, 32, 3495–3501. [Google Scholar] [CrossRef]
- Wu, J.; Peng, J.; Liu, B.; Pan, T.; Zhou, H.; Mao, J.; Yang, Y.; Qiu, C.; Su, Y. Passive silicon photonic devices for microwave photonic signal processing. Opt. Commun. 2016, 373, 44–52. [Google Scholar] [CrossRef]
- Liu, J.; Lucas, E.; Raja, A.S.; He, J.; Riemensberger, J.; Wang, R.N.; Karpov, M.; Guo, H.; Bouchand, R.; Kippenberg, T.J. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photonics 2020, 14, 486–491. [Google Scholar] [CrossRef]
- Islam, M.S.; Kovalev, A.V.; Coget, G.; Viktorov, E.A.; Citrin, D.S.; Locquet, A. Staircase dynamics of a photonic microwave oscillator based on a laser diode with delayed optoelectronic feedback. Phys. Rev. Appl. 2020, 13, 064038. [Google Scholar] [CrossRef]
- Xie, X.; Bouchand, R.; Nicolodi, D.; Giunta, M.; Hänsel, W.; Lezius, M.; Joshi, A.; Datta, S.; Alexandre, C.; Lours, M.; et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photonics 2017, 11, 44–47. [Google Scholar] [CrossRef]
- Xue, X.; Xuan, Y.; Bao, C.; Li, S.; Zheng, X.; Zhou, B.; Qi, M.; Weiner, A.M. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J. Light. Technol. 2018, 36, 2312–2321. [Google Scholar] [CrossRef] [Green Version]
- Bünermann, O.; Jiang, H.; Dorenkamp, Y.; Kandratsenka, A.; Janke, S.M.; Auerbach, D.J.; Wodtke, A.M. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science 2015, 350, 1346–1349. [Google Scholar] [CrossRef] [PubMed]
- Gliese, U.; Nielsen, T.N.; Bruun, M.; Christensen, E.L.; Stubkjaer, K.E.; Lindgren, S.; Broberg, B. A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers. IEEE Photonics Technol. Lett. 1992, 4, 936–938. [Google Scholar] [CrossRef] [Green Version]
- Kittlaus, E.A.; Eliyahu, D.; Ganji, S.; Williams, S.; Matsko, A.B.; Cooper, K.B.; Forouhar, S. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 2021, 12, 4397. [Google Scholar] [CrossRef]
- Hwang, S.K.; Chan, S.C.; Hsieh, S.C.; Li, C.Y. Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers. Opt. Commun. 2011, 284, 3581–3589. [Google Scholar] [CrossRef]
- Gao, Y.; Wen, A.; Zheng, H.; Liang, D.; Lin, L. Photonic microwave waveform generation based on phase modulation and tunable dispersion. Opt. Express 2016, 24, 12524–12533. [Google Scholar] [CrossRef]
- He, Y.; Jiang, Y.; Zi, Y.; Bai, G.; Tian, J.; Xia, Y.; Zhang, X.; Dong, R.; Luo, H. Photonic microwave waveforms generation based on two cascaded single-drive Mach-Zehnder modulators. Opt. Express 2018, 26, 7829–7841. [Google Scholar] [CrossRef]
- Dal Bosco, A.K.; Kanno, K.; Uchida, A.; Sciamanna, M.; Harayama, T.; Yoshimura, K. Cycles of self-pulsations in a photonic integrated circuit. Phys. Rev. E 2015, 92, 062905. [Google Scholar] [CrossRef]
- Sooudi, E.; Huyet, G.; McInerney, J.G.; Lelarge, F.; Merghem, K.; Martinez, A.; Ramdane, A.; Hegarty, S.P. Observation of harmonic-mode-locking in a mode-locked InAs/InP-based quantum-dash laser with cw optical injection. IEEE Photonics Technol. Lett. 2011, 23, 549–551. [Google Scholar] [CrossRef]
- Zou, X.; Liu, X.; Li, W.; Li, P.; Pan, W.; Yan, L.; Shao, L. Optoelectronic oscillators (OEOs) to sensing, measurement, and detection. IEEE J. Quantum Electron. 2015, 52, 1–16. [Google Scholar] [CrossRef]
- Liao, M.L.; Huang, Y.Z.; Weng, H.Z.; Han, J.Y.; Xiao, Z.X.; Xiao, J.L.; Yang, Y.D. Narrow-linewidth microwave generation by an optoelectronic oscillator with a directly modulated microsquare laser. Opt. Lett. 2017, 42, 4251–4254. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.D.; Wu, Z.M.; Deng, T.; Tang, X.; Fan, L.; Gao, Z.Y.; Xia, G.Q. Generation of widely tunable narrow-linewidth photonic microwave signals based on an optoelectronic oscillator using an optically injected semiconductor laser as the active tunable microwave photonic filter. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Light. Technol. 2018, 36, 4655–4663. [Google Scholar] [CrossRef]
- Li, M.; Hao, T.; Li, W.; Dai, Y. Tutorial on optoelectronic oscillators. APL Photonics 2021, 6, 061101. [Google Scholar] [CrossRef]
- AlMulla, M.; Liu, J.M. Linewidth characteristics of period-one dynamics induced by optically injected semiconductor lasers. Opt. Express 2020, 28, 14677–14693. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liu, J.M. Photonic microwave applications of the dynamics of semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1198–1211. [Google Scholar] [CrossRef]
- Zhuang, J.P.; Chan, S.C. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization. Opt. Lett. 2013, 38, 344–346. [Google Scholar] [CrossRef]
- Zhuang, J.P.; Chan, S.C. Phase noise characteristics of microwave signals generated by semiconductor laser dynamics. Opt. Express 2015, 33, 2777–2797. [Google Scholar] [CrossRef]
- Zhang, L.; Chan, S.C. Cascaded injection of semiconductor lasers in period-one oscillations for millimeter-wave generation. Opt. Lett. 2019, 44, 4905–4908. [Google Scholar] [CrossRef]
- Wang, C.; Raghunathan, R.; Schires, K.; Chan, S.C.; Lester, L.F.; Grillot, F. Optically injected InAs/GaAs quantum dot laser for tunable photonic microwave generation. Opt. Lett. 2016, 41, 1153–1156. [Google Scholar] [CrossRef]
- Perez, P.; Quirce, A.; Valle, A.; Consoli, A.; Noriega, I.; Pesquera, L.; Esquivias, I. Photonic generation of microwave signals using a single-mode VCSEL subject to dual-beam orthogonal optical injection. IEEE Photonics J. 2015, 7, 1–14. [Google Scholar] [CrossRef]
- Lin, H.; Ourari, S.; Huang, T.; Jha, A.; Briggs, A.; Bigagli, N. Photonic microwave generation in multimode VCSELs subject to orthogonal optical injection. J. Opt. Soc. Am. B 2017, 34, 2381–2389. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, P.; Li, N. Broad tunable photonic microwave generation in an optically pumped spin-VCSEL with optical feedback stabilization. Opt. Lett. 2021, 46, 3147–3150. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Hong, Y.; Spencer, P.S.; Benedikt, J.; Davies, I. Broad tunable photonic microwave generation based on period-one dy-namics of optical injection vertical-cavity surface-emitting lasers. Opt. Express 2017, 25, 19863–19871. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Xue, C.P.; Valle, A.; Spencer, P.S.; Li, H.Q.; Hong, Y. Stabilization of photonic microwave generation in vertical-cavity surface-emitting lasers with optical injection and feedback. J. Light. Technol. 2018, 32, 4660–4666. [Google Scholar] [CrossRef]
- Valle, A.; Quirce, A.; Ji, S.; Hong, Y. Polarization effects on photonic microwave generation in VCSELs under optical injection. Photonics Technol. Lett. 2018, 30, 1266–1269. [Google Scholar] [CrossRef]
- Fan, L.; Wu, Z.M.; Deng, T.; Wu, J.G.; Tang, X.; Chen, J.J.; Mao, S.; Xia, G.Q. Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser. J. Light. Technol. 2014, 32, 4660–4666. [Google Scholar] [CrossRef]
- Ma, X.W.; Huang, Y.Z.; Zou, L.X.; Liu, B.W.; Long, H.; Weng, H.Z.; Yang, Y.D.; Xiao, J.L. Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback. Opt. Express 2015, 23, 20321–20331. [Google Scholar] [CrossRef]
- Osborne, S.; O’Brien, S.; Buckley, K.; Fehse, R.; Amann, A.; Patchell, J.; Kelly, B.; Jones, D.R.; O’Gorman, J.; O’Reilly, E.P. Design of single-mode and two-color Fabry--PÉrot lasers with patterned refractive index. IEEE J. Sel. Top. Quantum Electron. 2007, 13, 1157–1163. [Google Scholar] [CrossRef]
- Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; Rensing, M.; O’Carroll, J.; Phelan, R.; Anandarajah, P.; Perry, P.; Barry, L.P.; et al. Discrete mode lasers for communication applications. IET Optoelectron. 2009, 3, 1–17. [Google Scholar] [CrossRef]
- Rosado, A.; Pérez-Serrano, A.; Tijero, J.M.G.; Gutierrez, A.V.; Pesquera, L.; Esquivias, I. Numerical and experimental analysis of optical frequency comb generation in gain-switched semiconductor lasers. IEEE J. Quantum Electron. 2019, 55, 1–12. [Google Scholar] [CrossRef]
- Zhong, Z.; Chang, D.; Jin, W.; Lee, M.W.; Wang, A.; Jiang, S.; He, J.; Tang, J.; Hong, Y. Intermittent dynamical state switching in discrete-mode semiconductor lasers subject to optical feedback. Photonics Res. 2021, 9, 1336–1342. [Google Scholar] [CrossRef]
- Chan, S.C.; Hwang, S.K.; Liu, J.M. Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser. Opt. Express 2007, 15, 14921–14935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, C.; Chang, D.; Fan, Y.; Ji, S.; Zhang, Z.; Lin, H.; Spencer, P.S.; Hong, Y. Characteristics of microwave photonic signal generation using vertical-cavity surface-emitting lasers with optical injection and feedback. J. Opt. Soc. Am. B 2020, 37, 1394–1400. [Google Scholar] [CrossRef]
- Xue, C.; Ji, S.; Hong, Y.; Jiang, N.; Li, H.; Qiu, K. Numerical investigation of photonic microwave generation in an optically injected semiconductor laser subject to filtered optical feedback. Opt. Express 2018, 27, 5065–5082. [Google Scholar] [CrossRef]
- Dellunde, J.; Torrent, M.C.; Sancho, J.M.; San, M.M. Frequency dynamics of gain-switched injection-locked semiconductor lasers. IEEE J. Quantum Electron. 1997, 33, 1537–1542. [Google Scholar] [CrossRef]
- Valle, A. Statistics of the optical phase of a gain-switched semiconductor laser for fast quantum randomness generation. Photonics 2021, 8, 388. [Google Scholar] [CrossRef]
- Li, N.; Pan, W.; Locquet, A.; Chizhevsky, V.N.; Citrin, D.S. Statistical properties of an external-cavity semiconductor laser: Experiment and theory. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 553–560. [Google Scholar]
- Hung, Y.H.; Hwang, S.K. Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking. Opt. Express 2015, 23, 6520–6532. [Google Scholar] [CrossRef]
- Suelzer, J.S.; Simpson, T.B.; Devgan, P.; Usechak, N.G. Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback. Opt. Lett. 2017, 42, 3181–3184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, D.; Zhong, Z.; Valle, A.; Jin, W.; Jiang, S.; Tang, J.; Hong, Y. Microwave Photonic Signal Generation in an Optically Injected Discrete Mode Semiconductor Laser. Photonics 2022, 9, 171. https://doi.org/10.3390/photonics9030171
Chang D, Zhong Z, Valle A, Jin W, Jiang S, Tang J, Hong Y. Microwave Photonic Signal Generation in an Optically Injected Discrete Mode Semiconductor Laser. Photonics. 2022; 9(3):171. https://doi.org/10.3390/photonics9030171
Chicago/Turabian StyleChang, Da, Zhuqiang Zhong, Angel Valle, Wei Jin, Shan Jiang, Jianming Tang, and Yanhua Hong. 2022. "Microwave Photonic Signal Generation in an Optically Injected Discrete Mode Semiconductor Laser" Photonics 9, no. 3: 171. https://doi.org/10.3390/photonics9030171
APA StyleChang, D., Zhong, Z., Valle, A., Jin, W., Jiang, S., Tang, J., & Hong, Y. (2022). Microwave Photonic Signal Generation in an Optically Injected Discrete Mode Semiconductor Laser. Photonics, 9(3), 171. https://doi.org/10.3390/photonics9030171