Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization
Abstract
:1. Introduction
2. Multilayer Photonic SNN Model
2.1. Photonic Spiking Neuron Model
2.2. Network of Photonic Spiking Neurons
2.3. The Synaptic Weight Modification Function by Combing the STDP and the Gradient Descent
3. The XOR Benchmark
3.1. Precoding
3.2. Technical Details
3.3. Analysis of Learning Process
4. The Iris Benchmark
4.1. Technical Details
4.2. Classifying the Iris Dataset
5. The Wisconsin Breast Cancer Benchmark
5.1. Classifying the Wisconsin Breast Cancer Dataset Dataset
5.2. Learning with the Various Sizes of Input Layer
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 1952, 117, 500–544. [Google Scholar] [CrossRef]
- Dayan, P.; Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- London, M.; Roth, A.; Beeren, L.; Hausser, M.; Latham, P. Sensitivity to perturbations implies high noise and suggests rate coding in cortex. Nature 2010, 466, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Hopfield, J.J. Pattern recognition computation using action potential timing for stimulus representation. Nature 1995, 376, 33–36. [Google Scholar] [CrossRef]
- Masuda, N.; Aihara, K. Bridging rate coding and temporal spike coding by effect of noise. Phys. Rev. Lett. 2002, 88, 248101. [Google Scholar] [CrossRef]
- Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671. [Google Scholar] [CrossRef]
- Escobar, M.J.; Masson, G.S.; Vieville, T.; Kornprobst, P. Action recognition using a bio-inspired feedforward spiking network. Int. J. Comput. Vis. 2009, 82, 284–301. [Google Scholar] [CrossRef]
- Wysoski, S.G.; Benuskova, L.; Kasabov, N. Evolving spiking neural networks for audiovisual information processing. Neural Netw. 2010, 23, 819–835. [Google Scholar] [CrossRef]
- Tavanaei, A.; Maida, A. Bio-inspired multi-layer spiking neural network extracts discriminative features from speech signals. In Proceedings of the International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; pp. 899–908. [Google Scholar]
- Ghosh-Dastidar, S.; Adeli, H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw. 2009, 22, 1419–1431. [Google Scholar] [CrossRef]
- Kasabov, N.; Feigin, V.; Hou, Z.; Chen, Y.; Liang, L.; Krishnamurthi, R.; Othman, M.; Parmar, P. Evolving spiking neural networks for personalised modelling, classification and prediction of spatio-temporal patterns with a case study on stroke. Neurocomputing 2014, 134, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Bohte, S.M.; Kok, J.N.; Han, L.P. Error-backpropagation in temporally encoded networks of neurons. Neurocomputing 2000, 48, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zeng, X.; Han, L.; Yang, J. A supervised multi-spike learning algorithm based on gradient descent for spiking neural networks. Neural Netw. 2013, 43, 99–113. [Google Scholar] [CrossRef]
- Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.; McKinstry, J.L.; Melano, T.; Barch, D.R.; et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. USA 2016, 113, 11441–11446. [Google Scholar] [CrossRef] [Green Version]
- Bellec, G.; Salaj, D.; Subramoney, A.; Legenstein, R.; Maass, W. Long short-term memory and learning-to-learn in networks of spiking neurons. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 4–5 December 2018. [Google Scholar]
- Neftci, E.O.; Mostafa, H.; Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Process. Mag. 2019, 36, 51–63. [Google Scholar]
- Zhao, A.; Jiang, N.; Zhang, Y.; Peng, J.; Liu, S.; Qiu, K.; Deng, M.; Zhang, Q. Semiconductor Laser-Based Multi-Channel Wideband Chaos Generation Using Optoelectronic Hybrid Feedback and Parallel Filtering. J. Lightwave Technol. 2022, 40, 751–761. [Google Scholar] [CrossRef]
- Caporale, N.; Dan, Y. Spike timing-dependent plasticity: A hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Markram, H.; Gerstner, W.; Sjöström, P.J. Spike-timing-dependent plasticity: A comprehensive overview. Front. Synaptic Neurosci. 2012, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Nelson, S.B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183. [Google Scholar] [CrossRef]
- Tavanaei, A.; Maida, A.S. BP-STDP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing 2017, 330, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.; Mostafa, H.; Neftci, E. Synaptic plasticity dynamics for deep continuous local learning (DECOLLE). Front. Neurosci. 2020, 14, 424. [Google Scholar] [CrossRef]
- Bellec, G.; Scherr, F.; Subramoney, A.; Hajek, E.; Salaj, D.; Legenstein, R.; Maass, W. A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun. 2020, 11, 3625. [Google Scholar] [CrossRef]
- Pammi, V.A.; Alfaro-Bittner, K.; Clerc, M.G.; Barbay, S. Photonic computing with single and coupled spiking micropillar lasers. IEEE J. Sel. Top Quantum Electron. 2020, 26, 1500307. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Ren, Z.; Zhang, Y.; Song, Z.; Hao, Y. All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on VCSEL-SA. Opt. Lett. 2020, 45, 1104–1107. [Google Scholar] [CrossRef]
- Xiang, S.; Zhang, Y.; Gong, J.; Guo, X.; Lin, L.; Hao, Y. STDP-based unsupervised spike pattern learning in a photonic spiking neural network with VCSELs and VCSOAs. IEEE J. Sel. Top Quantum Electron. 2019, 25, 1700109. [Google Scholar] [CrossRef]
- Robertson, J.; Matěj, H.; Julián, B.; Hurtado, A. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci. Rep. 2020, 10, 6098. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Robertson, J.; Hurtado, A. Controlled propagation of spiking dynamics in vertical-cavity surface-emitting lasers: Towards neuromorphic photonic networks. IEEE J. Sel. Top Quantum Electron. 2017, 23, 1800408. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.; Wade, E.; Kopp, Y.; Bueno, J.; Hurtado, A. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J. Sel. Top Quantum Electron. 2019, 26, 7700715. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Ren, Z.; Zhang, Y.; Song, Z.; Hao, Y. Training a multi-layer photonic spiking neural network with modified supervised learning algorithm based on photonic STDP. IEEE J. Sel. Top Quantum Electron. 2021, 27, 7500109. [Google Scholar] [CrossRef]
- Peng, H.T.; Angelatos, G.; Lima, T.F.D.; Nahmias, M.A.; Prucnal, P. Temporal information processing with an integrated laser neuron. IEEE J. Sel. Top Quantum Electron. 2020, 26, 5100209. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Xiang, S.; Ren, Z.; Fu, C.; Wen, A.; Hao, Y. Delay-weight plasticity-based supervised learning in optical spiking neural networks. Photon. Res. 2021, 9, B119–B127. [Google Scholar] [CrossRef]
- Nahmias, M.A.; Shastri, B.J.; Tait, A.N.; Prucnal, P.R. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J. Sel. Top Quantum Electron. 2013, 19, 1800212. [Google Scholar] [CrossRef]
- Xiang, S.; Ren, Z.; Song, Z.; Zhang, Y.; Hao, Y. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans. Neural Netw. Learn Syst. 2021, 32, 2494–2505. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, H. Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. Neural Netw. Learn Syst. 2018, 29, 3227–3235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minsky, M.; Papert, S.A.; Bottou, L. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Prechelt, L. Automatic early stopping using cross validation: Quantifying the criteria. Neural Netw. 1998, 11, 761–767. [Google Scholar] [CrossRef] [Green Version]
- Mangasarian, W.O.L. Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc. Natl. Acad. Sci. USA 1990, 87, 9193–9196. [Google Scholar]
- Cao, Y.; Chen, Y.; Khosla, D. Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition. Int. J. Comput. Vision 2015, 113, 54–66. [Google Scholar] [CrossRef]
- Wade, J.J.; Mcdaid, L.J.; Santos, J.A.; Sayers, H.M. SWAT: A spiking neural network training algorithm for classification problems. IEEE Trans. Neural Netw. 2010, 21, 1817–1830. [Google Scholar] [CrossRef] [Green Version]
- Dora, S.; Subramanian, K.; Suresh, S.; Sundararajan, N. Development of a self-regulating evolving spiking neural network for classification problem. Neurocomputing 2016, 171, 1216–1229. [Google Scholar] [CrossRef]
- Saleh, A.Y.; Shamsuddin, S.M.H.; Hamed, H.N.A. A hybrid differential evolution algorithm for parameter tuning of evolving spiking neural network. Int. J. Comput. Vis. Robot. 2017, 7, 20–34. [Google Scholar] [CrossRef]
- Hussain, I.; Thounaojam, D. SpiFoG: An efficient supervised learning algorithm for the network of spiking neurons. Sci. Rep. 2020, 10, 13122. [Google Scholar] [CrossRef]
- Wang, J.; Belatreche, A.; Maguire, L.; Mcginnity, T.M. An online supervised learning method for spiking neural networks with adaptive structure. Neurocomputing 2014, 144, 526–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Robertson, J.; Xiang, S.; Hejda, M.; Bueno, J.; Hurtado, A. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes. Photon. Res. 2021, 9, B201–B209. [Google Scholar] [CrossRef]
Description | Parameter and Value |
---|---|
Gain region cavity volume | |
SA region cavity volume | |
Gain region confinement factor | = 0.06 |
SA region confinement factor | = 0.05 |
Gain region carrier lifetime | = 1 ns |
SA region carrier lifetime | = 100 ps |
Gain region differential gain/loss | |
SA region differential gain/loss | |
Gain region transparency carrier density | |
SA region transparency carrier density | |
Gain region input bias current | = 2 mA |
SA region input bias current | = 0 mA |
Lasing wavelength | = 850 nm |
Bimolecular recombination term | |
Spontaneous emission coupling factor | |
Output power coupling coefficient | = 0.4 |
Photon lifetime | s |
Velocity of light | |
Planck constant | s |
Algorithm | Network Architecture | Convergence Epoch | Accuracy (%) | |
---|---|---|---|---|
Training Set | Test Set | |||
Iris dataset | ||||
SpikeProp [13] | 50-10-3 | 1000 | 97.4 ± 0.1 | 96.1 ± 0.1 |
SWAT [43] | 16-208-3 | 500 | 95.5 ± 0.6 | 95.3 ± 3.6 |
SRESN (online) [44] | 6-11 | 102 | 92.7 ± 4.2 | 93.0 ± 5.7 |
DEPT-ESNN [45] | — | — | 99.3 ± 0.2 | 89.3 ± 3.4 |
SpiFoG [46] | — | 299 | 97.4 ± 0.9 | 97.2 ± 2.1 |
This work | 24-20-1 | 440 | 96.8 ± 0.8 | 96.0 ± 1.3 |
Wisconsin breast cancer dataset | ||||
SpikeProp | 64-15-2 | 1500 | 97.6 ± 0.2 | 97.0 ± 0.6 |
SWAT | 9-117-2 | 500 | 96.2 ± 0.4 | 96.7 ± 2.3 |
SRESN (online) | 5-8 | 306 | 93.9 ± 1.8 | 94.0 ± 2.6 |
OSNN [47] | 54-22-2 | — | 91.1 ± 2.0 | 90.4 ± 1.8 |
SpiFoG | — | 896 | 98.3 ± 0.3 | 97.9 ± 0.1 |
This work | 28-20-1 | 300 | 97.3 ± 0.5 | 96.1 ± 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Xiang, S.; Han, Y.; Song, Z.; Hao, Y. Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization. Photonics 2022, 9, 217. https://doi.org/10.3390/photonics9040217
Fu C, Xiang S, Han Y, Song Z, Hao Y. Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization. Photonics. 2022; 9(4):217. https://doi.org/10.3390/photonics9040217
Chicago/Turabian StyleFu, Chentao, Shuiying Xiang, Yanan Han, Ziwei Song, and Yue Hao. 2022. "Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization" Photonics 9, no. 4: 217. https://doi.org/10.3390/photonics9040217
APA StyleFu, C., Xiang, S., Han, Y., Song, Z., & Hao, Y. (2022). Multilayer Photonic Spiking Neural Networks: Generalized Supervised Learning Algorithm and Network Optimization. Photonics, 9(4), 217. https://doi.org/10.3390/photonics9040217