Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications
Abstract
:1. Introduction
2. Photonic Microwave Signal Generation Based on P1 Dynamics
- (1)
- Simple Structure and Low Cost: The P1 oscillation generates photonic microwave signals all optically without using any microwave sources or high-speed modulators;
- (2)
- Good Frequency Tunability: The obtained microwave frequency fo has a large frequency tuning range that is many times the original relaxation oscillation frequency of the laser. A large microwave frequency range of a few to over 100 GHz is achievable by simply adjusting the optical injection parameters;
- (3)
- Frequency Modulation Capability: For a fixed master-slave detuning frequency fi, the generated microwave frequency fo would increase approximately linearly with the injection strength ξi over a large range, which has been verified in Figure 4b. This unique feature provides a convenient way to flexibly control the instantaneous frequency of the generated microwave signal. Therefore, assisted by dynamical modulation of injection parameters, wideband reconfigurable microwave frequency-modulated signals can be generated, which has important applications in modern communication and radar systems.
3. Photonic Microwave Stabilization for P1 Dynamics
3.1. Microwave Modulation Stabilization
3.2. Delayed Feedback Stabilization
4. Photonic Microwave Applications Based on P1 Dynamics
4.1. Diverse Signal Generation
4.2. Photonic Microwave Signal Processing
5. Discussion and Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghelfi, P.; Laghezza, F.; Scotti, F.; Serafino, G.; Capria, A.; Pinna, S.; Onori, D.; Porzi, C.; Scaffardi, M.; Malacarne, A. A fully photonics-based coherent radar system. Nature 2014, 507, 341–345. [Google Scholar] [PubMed]
- Pan, S.L.; Zhu, D.; Liu, S.F.; Xu, K.; Dai, Y.T.; Wang, T.L.; Liu, J.G.; Zhu, N.H.; Xue, Y.; Liu, N.J. Satellite payloads pay off. IEEE Microw. Mag. 2015, 16, 61–73. [Google Scholar]
- Pan, S.L.; Zhang, Y.M. Microwave photonic radars. J. Lightwave Technol. 2020, 38, 5450–5484. [Google Scholar]
- Kittlaus, E.A.; Eliyahu, D.; Ganji, S.; Williams, S.; Matsko, A.B.; Cooper, K.B.; Forouhar, S. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 2021, 12, 4397. [Google Scholar]
- Zhang, Y.M.; Zhang, F.Z.; Pan, S.L. Generation of frequency-multiplied and phase-coded signal using an optical polarization division multiplexing modulator. IEEE Trans. Microw. Theory Tech. 2017, 65, 651–660. [Google Scholar]
- Pillet, G.; Morvan, L.; Brunel, M.; Bretenaker, F.; Dolfi, D.; Vallet, M.; Huignard, J.P.; Floch, A.L. Dual-frequency laser at 1.5 µm for optical distribution and generation of high-purity microwave signals. J. Lightwave Technol. 2008, 26, 2764–2773. [Google Scholar]
- Xie, X.P.; Bouchand, R.; Nicolodi, D.; Giunta, M.; Haensel, W.; Lezius, M.; Joshi, A.; Datta, S.; Alexandre, C.; Lours, M.; et al. Photonic microwave signals with zeptosecond level absolute timing noise. Nat. Photonics 2017, 44, 44–47. [Google Scholar]
- Maleki, L. The optoelectronic oscillator. Nat. Photonics 2011, 5, 728–730. [Google Scholar]
- Simpson, T.B.; Liu, J.M. Enhanced modulation bandwidth in injection-locked semiconductor lasers. IEEE Photon. Technol. Lett. 1997, 9, 1322–1324. [Google Scholar]
- Hwang, S.K.; Liang, D.H. Effects of linewidth enhancement factor on period-one oscillations of optically injected semiconductor lasers. Appl. Phys. Lett. 2006, 89, 061120. [Google Scholar]
- Lee, C.H.; Shin, S.Y. Self-pulsing, spectral bistability, and chaos in a semiconductor laser diode with optoelectronic feedback. Appl. Phys. Lett. 1993, 62, 922–924. [Google Scholar]
- Tang, S.; Liu, J.M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron. 2001, 37, 329–336. [Google Scholar]
- Lin, F.Y.; Liu, J.M. Harmonic frequency locking in a semiconductor laser with delayed negative optoelectronic feedback. Appl. Phys. Lett. 2002, 81, 3128–3130. [Google Scholar]
- Kovanis, V.; Gavrielides, A.; Simpson, T.B.; Liu, J.M. Instabilities and chaos in optically injected semiconductor lasers. Appl. Phys. Lett. 1995, 67, 2780–2782. [Google Scholar]
- Lin, F.Y.; Liu, J.M. Diverse waveform generation using semiconductor lasers for radar and microwave applications. IEEE J. Quantum Electron. 2004, 40, 682–689. [Google Scholar]
- Simpson, T.B.; Liu, J.M.; Gavrielides, A. Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers. IEEE Photon. Technol. Lett. 1995, 7, 709–711. [Google Scholar]
- Jiang, P.; Zhou, P.; Li, N.Q.; Mu, P.H.; Li, X.F. Optically injected nanolasers for time-delay signature suppression and communications. Opt. Express. 2020, 28, 26421–26435. [Google Scholar]
- Uchida, A.; Amano, K.; Inoue, M.; Hirano, K.; Naito, S.; Someya, H.; Oowada, I.; Kurashige, T.; Shiki, M.; Yoshimori, S.; et al. Fast physical random bit generation with chaotic semiconductor lasers. Nat. Photonics 2008, 2, 728–732. [Google Scholar]
- Lin, F.Y.; Liu, J.M. Chaotic lidar. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 991–997. [Google Scholar]
- Chan, S.C. Analysis of an optically injected semiconductor laser for microwave generation. IEEE J. Quantum Electron. 2010, 46, 421–428. [Google Scholar]
- Hwang, S.K.; Liu, J.M.; White, J.K. Characteristics of period-one oscillations in semiconductor lasers subject to optical injection. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 974–981. [Google Scholar]
- Simpson, T.B.; Liu, J.M.; Huang, K.F.; Tai, K. Nonlinear dynamics induced by external optical injection in semiconductor lasers. Quantum Semiclass. Opt. 1997, 9, 765–784. [Google Scholar]
- Zhuang, J.P.; Chan, S.C. Phase noise characteristics of microwave signals generated by semiconductor laser dynamics. Opt. Express. 2015, 23, 2777–2797. [Google Scholar] [PubMed]
- Hwang, S.K.; Liu, J.M. Dynamical characteristics of an optically injected semiconductor laser. Opt. Commun. 2000, 183, 195–205. [Google Scholar]
- Chan, S.C.; Hwang, S.K.; Liu, J.M. Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser. Opt. Lett. 2006, 31, 2254–2256. [Google Scholar] [PubMed]
- Zhou, P.; Zhang, F.Z.; Guo, Q.S.; Li, S.M.; Pan, S.L. Reconfigurable radar waveform generation based on an optically injected semiconductor laser. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1801109. [Google Scholar]
- Simpson, T.B.; Doft, F. Double-Locked Laser Diode for Microwave Photonics Applications. IEEE Photon. Technol. Lett. 1999, 11, 1476–1478. [Google Scholar]
- Fan, L.; Wu, Z.M.; Deng, T.; Wu, J.G.; Tang, X.; Chen, J.J.; Mao, S.; Xia, G.Q. Subharmonic microwave modulation stabilization of tunable photonic microwave generated by period-one nonlinear dynamics of an optically injected semiconductor laser. J. Lightwave Technol. 2014, 32, 4058–4064. [Google Scholar]
- Fan, L.; Xia, G.Q.; Chen, J.J.; Tang, X.; Liang, Q.; Wu, Z.M. High-purity 60 GHz band millimeter-wave generation based on optically injected semiconductor laser under subharmonic microwave modulation. Opt. Express 2016, 24, 18252–18265. [Google Scholar]
- Hung, Y.H.; Hwang, S.K. Photonic microwave stabilization for period-one nonlinear dynamics of semiconductor lasers using optical modulation sideband injection locking. Opt. Express 2015, 23, 6520–6532. [Google Scholar]
- Tseng, C.H.; Lin, C.T.; Hwang, S.K. V- and W-band microwave generation and modulation using semiconductor lasers at period-one nonlinear dynamics. Opt. Lett. 2020, 45, 6819–6822. [Google Scholar] [PubMed]
- Zhang, L.; Chan, S.C. Cascade injection of semiconductor lasers in period-one oscillations for millimeter-wave generation. Opt. Lett. 2019, 44, 4905–4908. [Google Scholar] [PubMed]
- Zhuang, J.P.; Chan, S.C. Tunable photonic microwave generation using optically injected semiconductor laser dynamics with optical feedback stabilization. Opt. Lett. 2013, 38, 344–346. [Google Scholar] [PubMed]
- Simpson, T.B.; Liu, J.M.; Almulla, M.; Usechak, N.G.; Kovanis, V. Linewidth sharpening via polarization-rotated feedback in optically injected semiconductor laser oscillators. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 1500807. [Google Scholar]
- Chan, S.C.; Liu, J.M. Tunable narrow-linewidth photonic microwave generation using semiconductor laser dynamics. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 1025–1032. [Google Scholar]
- Suelzer, J.S.; Simpson, T.B.; Devgan, P.; Usechak, N.G. Tunable, low-phase-noise microwave signals from an optically injected semiconductor laser with opto-electronic feedback. Opt. Lett. 2017, 42, 3181–3184. [Google Scholar]
- Yao, X.S.; Maleki, L. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron. 2000, 36, 79–84. [Google Scholar]
- Zhou, P.; Zhang, F.Z.; Zhang, D.C.; Pan, S.L. Performance enhancement of an optically-injected-semiconductor-laser-based optoelectronic oscillator by subharmonic microwave modulation. Opt. Lett. 2018, 43, 5439–5442. [Google Scholar]
- Mckinney, J.D.; Leaird, D.E.; Weiner, A.M. Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper. Opt. Lett. 2002, 27, 1345–1347. [Google Scholar]
- Li, M.; Wang, C.; Li, W.Z.; Yao, J.P. An unbalanced temporal pulse-shaping system for chirped microwave waveform generation. IEEE Trans. Microw. Theory Tech. 2010, 58, 2968–2975. [Google Scholar]
- Wang, C.; Yao, J.P. Photonic generation of chirped microwave pulses using superimposed chirped fiber Bragg gratings. IEEE Photon. Technol. Lett. 2008, 20, 882–884. [Google Scholar]
- Li, W.Z.; Yao, J.P. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop. J. Lightwave Technol. 2014, 32, 3573–3579. [Google Scholar]
- Brunetti, G.; Marocco, G.; Armenise, M.N.; Ciminelli, C. High performance chirped microwave generator for space applications. In Proceedings of the 2020 International Conference on Space Optics (ICSO 2020), Online, 30 March–2 April 2020; pp. 1230–1239. [Google Scholar]
- Coutinho, O.L.; Zhang, J.J.; Yao, J.P. Photonic generation of a linearly chirped microwave waveform with a large time-bandwidth product based on self-heterodyne technique. In Proceedings of the 2015 International Topical Meeting on Microwave Photonics (MWP 2015), Paphos, Cyprus, 26–29 October 2015. [Google Scholar]
- Zhou, P.; Zhang, F.Z.; Guo, Q.S.; Pan, S.L. Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser. Opt. Express 2016, 24, 18460–18467. [Google Scholar] [PubMed] [Green Version]
- Zhang, B.W.; Zhu, D.; Zhou, P.; Xie, C.X.; Pan, S.L. Tunable triangular frequency modulated microwave waveform generation with improved linearity using an optically injected semiconductor laser. Appl. Opt. 2019, 58, 5479–5485. [Google Scholar]
- Zhou, P.; Zhang, F.Z.; Ye, X.W.; Guo, Q.S.; Pan, S.L. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser. IEEE Photon. J. 2016, 8, 5501909. [Google Scholar]
- Zhou, P.; Zhang, R.H.; Li, K.X.; Jiang, Z.D.; Mu, P.H.; Bao, H.L.; Li, N.Q. Generation of NLFM microwave waveforms based on controlled period-one dynamics of semiconductor lasers. Opt. Express 2020, 28, 32647–32656. [Google Scholar]
- Zhou, P.; Chen, H.; Li, N.Q.; Zhang, R.H.; Pan, S.L. Photonic generation of tunable dual-chirp microwave waveforms using a dual-beam optically injected semiconductor laser. Opt. Lett. 2020, 45, 1342–1345. [Google Scholar]
- Zhuang, J.P.; Li, X.Z.; Li, S.S.; Chan, S.C. Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser. Opt. Lett. 2016, 41, 5764–5767. [Google Scholar]
- Zhou, P.; Zhang, F.Z.; Pan, S.L. Generation of linear frequency-modulated waveforms by a frequency-sweeping optoelectronic oscillator. J. Lightwave Technol. 2018, 36, 3927–3934. [Google Scholar]
- Lin, X.D.; Xia, G.Q.; Shang, Z.; Deng, T.; Tang, X.; Fan, L.; Gao, Z.Y.; Wu, Z.M. Frequency-modulated continuous-wave generation based on an optically injected semiconductor laser with optical feedback stabilization. Opt. Express 2019, 27, 1217–1225. [Google Scholar]
- Tseng, C.H.; Hung, Y.H.; Hwang, S.K. Frequency-modulated continuous-wave microwave generation using stabilized period-one nonlinear dynamics of semiconductor lasers. Opt. Lett. 2019, 44, 3334–3337. [Google Scholar] [PubMed]
- Hagmann, M.J.; Stenger, F.S.; Yarotski, D.A. Linewidth of the harmonics in a microwave frequency comb generated by focusing a mode-locked ultrafast laser on a tunneling junction. J. Appl. Phys. 2013, 114, 223107. [Google Scholar]
- Li, Y.H.; Xia, G.Q.; Wu, Z.M. Tunable and broadband microwave frequency comb generation using optically injected semiconductor laser nonlinear dynamics. IEEE Photon. J. 2017, 9, 5502607. [Google Scholar]
- Zhang, R.H.; Zhou, P.; Li, K.X.; Bao, H.L.; Li, N.Q. Photonic generation of high-performance microwave frequency combs using an optically injected semiconductor laser with dual-loop optoelectronic feedback. Opt. Lett. 2021, 46, 4622–4625. [Google Scholar] [PubMed]
- Tseng, C.H.; Hwang, S.K. Broadband chaotic microwave generation through destabilization of period-one nonlinear dynamics in semiconductor lasers for radar applications. Opt. Lett. 2020, 45, 3777–3780. [Google Scholar]
- Zeng, Y.; Zhou, P.; Huang, Y.; Li, N.Q. Optical chaos generated in semiconductor lasers with intensity-modulated optical injection: A numerical study. Appl. Opt. 2021, 60, 7963–7972. [Google Scholar]
- Tseng, C.H.; Funabashi, R.; Kanno, K.; Uchida, A.; Wei, C.C.; Hwang, S.K. High-entropy chaos generation using semiconductor lasers subject to intensity-modulated optical injection for certified physical random number generation. Opt. Lett. 2021, 46, 3384–3387. [Google Scholar]
- Chen, H.; Ukaegbu, I.; Nakarmi, B.; Pan, S.L. RF multiplier based on harmonic-locked SMFP-LD and OEO structure. IEEE Access 2022, 10, 435–440. [Google Scholar]
- Hung, Y.H.; Hwang, S.K. Highly efficient local-oscillator-free photonic microwave down-converters based on period-one nonlinear dynamics of semiconductor lasers. In Proceedings of the SPIE Photonics West Conference, San Francisco, CA, USA, 13–18 February 2016; p. 974718. [Google Scholar]
- Han, B.C.; Yu, J.L.; Wang, W.R. Local oscillator free all optical OOK signal frequency up conversion enabled by injection locking of Fabry-Pérot laser. Opt. Commun. 2014, 325, 40–46. [Google Scholar]
- Zhou, P.; Li, N.Q.; Pan, S.L. Photonic microwave harmonic down-converter based on stabilized period-one nonlinear dynamics of semiconductor lasers. Opt. Lett. 2019, 44, 4869–4872. [Google Scholar]
- Ghelfi, P.; Serafino, G.; Scotti, F.; Laghezza, F.; Bogoni, A. Flexible receiver for multiband orthogonal frequency division multiplexing signals at the millimeter waveband based on optical downconversion. Opt. Lett. 2012, 37, 3924–3926. [Google Scholar] [PubMed]
- Zou, X.H.; Zhang, S.J.; Wang, H.; Zhang, Z.Y.; Li, J.J.; Zhang, Y.L.; Liu, S.; Liu, Y. Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier. IEEE Photon. J. 2018, 10, 5500308. [Google Scholar]
- Hung, Y.H.; Chu, C.H.; Hwang, S.K. Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links. Opt. Lett. 2013, 38, 1482–1484. [Google Scholar] [PubMed]
- Hung, Y.H.; Yan, J.H.; Feng, K.M.; Hwang, S.K. Photonic microwave carrier recovery using period-one nonlinear dynamics of semiconductor lasers for OFDM-RoF coherent detection. Opt. Lett. 2017, 42, 1482–1484. [Google Scholar]
- Zhou, P.; Zhang, F.Z.; Guo, Q.S.; Pan, S.L. A modulator-free photonic triangular pulse generator based on semiconductor lasers. IEEE Photon. Technol. Lett. 2018, 30, 1317–1320. [Google Scholar]
- Zhou, P.; Zhang, F.Z.; Gao, B.D.; Pan, S.L. Optical pulse generation by an optoelectronic oscillator with optically injected semiconductor laser. IEEE Photon. Technol. Lett. 2016, 28, 1827–1830. [Google Scholar]
- Hung, Y.H.; Hwang, S.K. Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers. Opt. Lett. 2013, 38, 3355–3358. [Google Scholar]
- Hsieh, K.L.; Hwang, S.K.; Yang, C.L. Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers. Opt. Lett. 2017, 42, 3307–3310. [Google Scholar]
- Zhang, B.W.; Zhu, D.; Chen, H.; Zhou, Y.W.; Pan, S.L. Microwave Frequency Measurement Based on an Optically Injected Semiconductor Laser. IEEE Photon. Technol. Lett. 2020, 32, 1485–1488. [Google Scholar]
- Zhou, P.; Zhang, R.H.; Li, N.Q.; Jiang, Z.D.; Pan, S.L. An RF-source-free reconfigurable microwave photonic radar with high-resolution and fast detection capability. J. Lightwave Technol. 2022. [Google Scholar] [CrossRef]
- Diaz, R.; Chan, S.C.; Liu, J.M. Lidar detection using a dual-frequency source. Opt. Lett. 2006, 31, 3600–3602. [Google Scholar] [PubMed] [Green Version]
- Li, J.; Zheng, J.L.; Zhang, Y.S.; Shi, Y.C.; Zhu, H.T.; Li, Y.D.; Zhang, X.; Zhou, Y.K.; Chen, X.F. Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser. Opt. Express 2018, 26, 9676–9685. [Google Scholar] [PubMed]
- Guo, L.; Zhang, R.K.; Lu, D.; Pan, B.W.; Chen, G.G.; Zhao, L.J.; Wang, W. Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser. IEEE Photon. Technol. Lett. 2017, 29, 1915–1918. [Google Scholar]
- Huang, Y.; Zhou, P.; Li, N.Q. Broad tunable photonic microwave generation in an optically pumped spin-VCSEL with optical feedback stabilization. Opt. Lett. 2021, 46, 3147–3150. [Google Scholar]
- Marpaung, D.; Yao, J.P.; Capmany, J. Integrated microwave photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar]
Techniques | Complexity | Cost | Tunability | Microwave Linewidth | Frequency Modulation |
---|---|---|---|---|---|
External modulation | Moderate | High | Fair | Determined by source | Determined by source |
Dual-frequency lasers | Moderate | Moderate | Fair | Moderate | No |
Mode-locked lasers | Complicated | High | Poor | Narrow | No |
Optoelectronic oscillator | Complicated | Moderate | Fair | Narrow | Special design required |
Period-one dynamics | Simple | Low | Good | Moderate | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Li, N.; Pan, S. Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications. Photonics 2022, 9, 227. https://doi.org/10.3390/photonics9040227
Zhou P, Li N, Pan S. Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications. Photonics. 2022; 9(4):227. https://doi.org/10.3390/photonics9040227
Chicago/Turabian StyleZhou, Pei, Nianqiang Li, and Shilong Pan. 2022. "Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications" Photonics 9, no. 4: 227. https://doi.org/10.3390/photonics9040227
APA StyleZhou, P., Li, N., & Pan, S. (2022). Period-One Laser Dynamics for Photonic Microwave Signal Generation and Applications. Photonics, 9(4), 227. https://doi.org/10.3390/photonics9040227