Generation of Long-Term Stable Squeezed Vacuum States Using Dither-Locking Technique
Abstract
:1. Introduction
2. Experimental Setup
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ou, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett. 1992, 68, 3663. [Google Scholar] [CrossRef] [Green Version]
- Wakui, K.; Takahashi, H.; Furusawa, A.; Sasaki, M. Photon subtracted squeezed states generated with periodically poled KTiOPO(4). Opt. Express 2007, 15, 3568. [Google Scholar] [CrossRef] [Green Version]
- Grosse, N.B.; Bowen, W.P.; McKenzie, K.; Lam, P.K. Harmonic entanglement with second-Order nonlinearity. Phys. Rev. Lett. 2006, 96, 063601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loock, P.; Braunstein, S.L. Multipartite entanglement for continuous variables: A quantum teleportation network. Phys. Rev. Lett. 2000, 84, 3482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neergaard-Nielsen, J.S.; Nielsen, B.M.; Hettich, C.; Mølmer, K.; Polzik, E.S. Generation of a Superposition of Odd Photon Number States for Quantum Information Networks. Phys. Rev. Lett. 2006, 97, 083604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, E.; Liu, J.; Chao, L.-M.; Qiao, J.; Niu, J.-Y.; He, J.-L.; Zhang, Y.; Ma, Y.-H. Generation of quadripartite continuous-variable entanglement in two coupled opto-mechanical systems. Laser Phys. 2020, 30, 065205. [Google Scholar] [CrossRef]
- Jung, K.; Kim, J. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency. Opt. Lett. 2015, 40, 316–319. [Google Scholar] [CrossRef]
- Goda, K.; Miyakawa, O.; Mikhailov, E.; Saraf, S.; Adhikari, R.; McKenzie, K.; Ward, R.; Vass, S.; Weinstein, A.J.; Mavalvala, N. A quantum-enhanced prototype gravitational-wave detector. Nat. Phys. 2008, 4, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Slusher, R.; Hollberg, L.W.; Yurke, B.; Mertz, J.C.; Valley, J.F. Squeezed states of light I. Opt. News 1986, 12, 16–17. [Google Scholar] [CrossRef]
- Andersen, U.L.; Gehring, T.; Marquardt, C.; Leuchs, G. 30 years of squeezed light generation. Phys. Scr. 2016, 91, 053001. [Google Scholar] [CrossRef]
- Wu, L.-A.; Kimble, H.J.; Hall, J.L.; Wu, H. Generation of Squeezed States by Parametric Down Conversion. Phys. Rev. Lett. 1986, 57, 2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slusher, R.E.; Grangier, P.; LaPorta, A.; Yurke, B.; Potasek, M.J. Pulsed Squeezed Light. Phys. Rev. Lett. 1987, 59, 2566. [Google Scholar] [CrossRef] [PubMed]
- Polzik, E.S.; Carri, J.; Kimble, H.J. Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit. Appl. Phys. B 1992, 55, 279. [Google Scholar] [CrossRef]
- Schneider, K.; Lang, M.; Mlynek, J.; Schiller, S. Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Express 1998, 2, 59. [Google Scholar] [CrossRef] [PubMed]
- Vahlbruch, H.; Mehmet, M.; Chelkowski, S.; Hage, B.; Franzen, A.; Lastzka, N.; Goler, S.; Danzmann, K.; Schnabel, R. Observation of squeezed light with 10-dB quantum-noise reduction. Phsy. Rev. Lett. 2008, 100, 033602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, J.; Kikuchi, K. Bright squeezing by singly resonant second-harmonic generation: Effect of fundamental depletion and feedback. Opt. Lett. 1996, 21, 821–823. [Google Scholar] [CrossRef]
- Li, R.-D.; Kumar, P. Squeezing in traveling-wave second-harmonic generation. Opt. Lett. 1993, 18, 1961. [Google Scholar] [CrossRef]
- Vahlbruch, H.; Mehmet, M.; Danzmann, K.; Schnabel, R. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency. Phys. Rev. Lett. 2016, 117, 110801. [Google Scholar] [CrossRef]
- McKenzie, K.; Shaddock, D.A.; McClelland, D.E.; Buchler, B.C.; Lam, P.K. A quantum-enhanced prototype gravitational-wave detector. Phys. Rev. Lett. 2002, 88, 231102. [Google Scholar] [CrossRef] [Green Version]
- Grosse, N.B.; Symul, T.; Stobinska, M.; Ralph, T.; Lam, P.K. Measuring Photon Antibunching from Continuous Variable Sideband Squeezing. Phys. Rev. Lett. 2007, 98, 153603. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Wu, D.; Kasai, K.; Wang, L.; Watanabe, M.; Zhang, Y. Measurement of the wavefunction for a biphoton state with homodyne detection using least squares estimation. J. Opt. 2020, 22, 025202. [Google Scholar] [CrossRef]
- Wu, D.; Kawamoto, K.; Guo, X.; Kasai, K.; Watanabe, M.; Zhang, Y. Observation of two-photon interference with continuous variables by homodyne detection. Eur. Phys. J. D 2017, 71, 260. [Google Scholar] [CrossRef]
- Ma, L.; Guo, H.; Liu, K.; Sun, H.; Gao, J. Long-term stable continuous variable entanglement generation in type-II non-degenerate optical parametric amplifier. Opt. Express 2015, 27, 35120. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Shi, S.; Wang, Y.; Ma, W.; Zheng, Y.; Peng, K. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett. 2017, 42, 4553. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Feng, J.; Li, Y.; Zhang, K. Generation of stable, squeezed vacuum states at audio frequency using optical serrodyne sideband modulation locking method. Laser Phys. Lett. 2019, 16, 055202. [Google Scholar] [CrossRef]
- Feng, F.; Bi, S.W.; Lu, B.Z.; Kang, M.H. Long-term stable bright amplitude-squeezed state of light at 1064 nm for quantum imaging. Optik 2013, 124, 1070. [Google Scholar] [CrossRef]
- Black, E.D. An introduction to pound-drever-hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79. [Google Scholar] [CrossRef] [Green Version]
- Taubman, M.S.; Hall, J. Cancellation of laser dither modulation from optical frequency standards. Opt. Lett. 2000, 25, 311. [Google Scholar] [CrossRef]
- Zhang, Y.; Hayashi, N.; Matsumori, H.; Mitazaki, R.; Xue, Y.; Okada-Shudo, Y.; Watanabe, M.; Kasai, K. Generation of 1.2 W green light using a resonant cavity-enhanced second-harmonic process with a periodically poled KTiOPO4. Opt. Commun. 2013, 294, 271. [Google Scholar] [CrossRef]
- Li, T.; Sakurai, S.; Kasai, K.; Wang, L.; Watanabe, M.; Zhang, Y. Experimental observation of three-photon interference between a two-photon state and a weak coherent state on a beam splitter. Opt. Express 2018, 26, 20442–20449. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Han, Y.; Zhu, X.; Cao, Z. Generation of Long-Term Stable Squeezed Vacuum States Using Dither-Locking Technique. Photonics 2022, 9, 472. https://doi.org/10.3390/photonics9070472
Wu D, Han Y, Zhu X, Cao Z. Generation of Long-Term Stable Squeezed Vacuum States Using Dither-Locking Technique. Photonics. 2022; 9(7):472. https://doi.org/10.3390/photonics9070472
Chicago/Turabian StyleWu, Daohua, Yashuai Han, Xuehua Zhu, and Zhuoliang Cao. 2022. "Generation of Long-Term Stable Squeezed Vacuum States Using Dither-Locking Technique" Photonics 9, no. 7: 472. https://doi.org/10.3390/photonics9070472
APA StyleWu, D., Han, Y., Zhu, X., & Cao, Z. (2022). Generation of Long-Term Stable Squeezed Vacuum States Using Dither-Locking Technique. Photonics, 9(7), 472. https://doi.org/10.3390/photonics9070472