Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Luminescent Properties
2.3. Scintillation Properties
2.4. Impurities Effect
3. Materials and Methods
3.1. Reagents
3.2. Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
3.3. Photoluminescence Studies
3.4. Powder X-ray Diffraction
3.5. Scintillation Measurements
3.6. Additional Purification of CaCO3 and Li2CO3
3.7. Synthesis of CaCO3:Eu
3.8. Synthesis of Li2CaSiO4:Eu2+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Neutron Scattering Lengths and Cross Sections. Available online: https://www.ncnr.nist.gov/resources/n-lengths/ (accessed on 5 August 2022).
- Cha, B.K.; Kim, Y.J.; Kim, J.T.; Sim, C.; Cho, G. Fabrication and imaging characterization of high sensitive CsI(Tl) and Gd2O2S(Tb) scintillator screens for X-ray imaging detectors. Radiat. Meas. 2010, 45, 742–745. [Google Scholar] [CrossRef]
- Hussey, D.; LaManna, J.; Baltic, E.; Jacobson, D. Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators. Nucl. Instrum. A 2017, 866, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Hupke, R. The new UFC detector for CT imaging. RBM-News 1998, 20, 227–232. [Google Scholar] [CrossRef]
- Taggart, M.P.; Nakhostin, M.; Sellin, P.J. Investigation into the potential of GAGG:Ce as a neutron detector. Nucl. Instrum. A 2019, 931, 121–126. [Google Scholar] [CrossRef]
- Fedorov, A.; Gurinovich, V.; Guzov, V.; Dosovitskiy, G.; Korzhik, M.; Kozhemyakin, V.; Lopatik, A.; Kozlov, D.; Mechinsky, V.; Retivov, V. Sensitivity of GAGG based scintillation neutron detector with SiPM readout. Nucl. Eng. Technol. 2020, 52, 2306–2312. [Google Scholar] [CrossRef]
- Gerasymov, I.; Nepokupnaya, T.; Boyarintsev, A.; Sidletskiy, O.; Kurtsev Voloshyna, O.; Trubaieva, O.; Boyarintseva, Y.; Sibilieva, T.; Shaposhnyk, A.; Opolonin, O.; et al. GAGG:Ce composite scintillator for X-ray imaging. Opt. Mater. 2020, 109, 110305. [Google Scholar] [CrossRef]
- Fedorov, A.; Komendo, I.; Amelina, A.; Gordienko, E.; Gurinovich, V.; Guzov, V.; Dosovitskiy, G.; Kozhemyakin, V.; Kozlov, D.; Lopatik, A.; et al. GYAGG/6LiF composite scintillation screen for neutron detection. Nucl. Eng. Technol. 2022, 54, 1024–1029. [Google Scholar] [CrossRef]
- Kaschuck, Y.; Esposito, B. Neutron/γ-ray digital pulse shape discrimination with organic scintillators. Nucl. Instrum. A 2005, 551, 420–428. [Google Scholar] [CrossRef]
- Syntfeld, A.; Moszynski, M.; Arlt, R.; Balcerzyk, M.; Kapusta, M.; Majorov, M.; Marcinkowski, R.; Schotanus, P.; Swoboda, M.; Wolski, D. LiI(Eu) in Neutron and Gamma-ray Spectrometry a Highly Sensitive Thermal Neutron Detector. IEEE Trans. Nucl. Sci. 2006, 52, 3151–3156. [Google Scholar] [CrossRef]
- Shirwadkar, U.; Glodo, J.; van Loef, E.; Hawrami, R.; Mukhopadhyay, S.; Churilov, A.; Higgins, W.; Shah, K. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration. Nucl. Instrum. A 2011, 652, 268–270. [Google Scholar] [CrossRef]
- Combes, C.M.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Optical and scintillation properties of pure and Ce3+-doped Cs2LiYCl6 and Li3YCl6:Ce3+ crystals. J. Lumin. 1999, 82, 299–305. [Google Scholar] [CrossRef]
- Kamada, K.; Takizawa, Y.; Yoshino, M.; Kutsuzawa, N.; Jin Kim, K.; Murakami, R.; Kochurikhin, V.; Yoshikawa, A. Growth and scintillation properties of Eu doped Li2SrCl4/LiSr2Cl5 eutectic. J. Cryst. Growth. 2022, 581, 126500. [Google Scholar] [CrossRef]
- Takizawa, Y.; Kamada, K.; Yoshino, M.; Yajima, R.; Jin Kim, R.; Kochurikhin, V.; Yoshikawa, A. Growth of 6Li-enriched LiCl/BaCl2 eutectic as a novel neutron scintillator. JJAP 2022, 61, SC1038. [Google Scholar] [CrossRef]
- He, H.; Fu, R.; Qian, F.; Song, X.F. Luminescent properties of Li2CaSiO4:Eu2+ phosphor. J. Mater. Sci. Mater. Electron. 2012, 23, 599–604. [Google Scholar] [CrossRef]
- Lee, J.; Bae, J.S.; Ahn, S.I.; Chung, I.; Kim, S.J.; Park, J.C. Highly Luminous N3- -Substituted Li2MSiO4-δN2/3δ:Eu2+ (M = Ca, Sr, and Ba) for White NUV Light-Emitting Diodes. ACS Omega 2019, 4, 8431–8440. [Google Scholar]
- Zhou, L.; Du, P.; Li, L. Facile modulation the sensitivity of Eu2+/Eu3+-coactivated Li2CaSiO4 phosphors through adjusting spatial mode and doping concentration. Sci. Rep. 2020, 10, 20180. [Google Scholar] [CrossRef]
- Kang, X.; Lu, S.; Wang, H.; Ling, D.; Lu, W. Tricolor- and White Light–Emitting Ce3+/Tb3+/Mn2+-Coactivated Li2Ca4Si4O13 Phosphor via Energy Transfer. ACS Omega 2018, 3, 16714–16720. [Google Scholar] [CrossRef]
- Salman, S.M.; Darwish, H.; Mahdy, E.A. The influence of Al2O3, MgO and ZnO on the crystallization characteristics and properties of lithium calcium silicate glasses and glass-ceramics. Mater. Chem. Phys. 2008, 112, 945–953. [Google Scholar] [CrossRef]
- Nayak, M.; Erwin Desa, J.A.; Babu, P.A. Magnetic and spectroscopic studies of an iron lithium calcium silicate glass and ceramic. J. Non Cryst. Solids 2018, 484, 1–4. [Google Scholar] [CrossRef]
- Sharonov, M.; Bykov, A.; Petrievic, V.; Alfano, R.A. Cr4+-doped Li2CaSiO4 crystal: Growth and spectroscopic properties. Opt. Commun. 2004, 231, 273–280. [Google Scholar] [CrossRef]
- Liu, J.; Sun, J.; Shi, C. A new luminescent material: Li2CaSiO4:Eu2+. Mater. Lett. 2006, 60, 2830–2833. [Google Scholar] [CrossRef]
- Xie, M.; Song, T. Synthesis and Photoluminescence Properties of Li2CaSiO4:Eu3+. ECS J. Solid State Sci. Technol. 2013, 2, R29–R32. [Google Scholar] [CrossRef]
- Soundara-Pandian, L.; Hawrami, R.; Glodo, J.; Ariesanti, E.; van Loef, E.V.; Shah, K. Lithium Alkaline Halides—Next Generation of Dual Mode Scintillators. IEEE Trans. Nucl. Sci. 2016, 63, 490–496. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, W.; Lan, L.; Wang, J.; Chen, J.; Wang, N. Enhanced emission from Li2CaSiO4:Eu2+ phosphors by doping with Y3+. J. Alloys Compd. 2014, 592, 213–219. [Google Scholar] [CrossRef]
- Zhong, J.; Zhao, W.; Lan, L.; Wang, J. Strong luminescence enhancement of Li2CaSiO4:Eu2+ phosphors by codoping with La3+. J. Mater. Sci Mater. Electron. 2014, 25, 736–741. [Google Scholar] [CrossRef]
- Wilbur, S.M.; Sugiyama, N.; McCurdy, E. Optimizing Performance for a Collision/Reaction Cell ICP-MS System Operating in Helium Collision Mode. Available online: https://www.spectroscopyonline.com/view/optimizing-performance-collisionreaction-cell-icp-ms-system-operating-helium-collision-mode/ (accessed on 5 August 2022).
- Sasano, M.; Nishioka, H.; Okuyama, S.; Nakazawa, K.; Makishima, K.; Yamada, S.; Yuasa, T.; Okumura, A.; Kataoka, J.; Fukazawa, Y.; et al. Geometry dependence of the light collection efficiency of BGO crystal scintillators read out by avalanche photo diodes. Nucl. Instrum. A 2013, 715, 105–111. [Google Scholar] [CrossRef]
- Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Sandu, R. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield. Opt. Mater. 2018, 78, 312–318. [Google Scholar] [CrossRef]
- Alenkov, V.V.; Buzanov, O.A.; Dosovitskii, A.E.; Kornoukhov, V.N.; Mikhlin, A.L.; Moseev, P.S.; Khanbekov, N.D. Ultrapurification of isotopically enriched materials for 40Ca100MoO4 crystal growth. Inorg. Mater. 2013, 49, 1220–1223. [Google Scholar] [CrossRef]
- Bessiere, A.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. Luminescence and scintillation properties of CS2LiYCl6:Ce3+ for γ and neutron detection. Nucl. Instrum. A 2005, 537, 242–246. [Google Scholar]
- Bessiere, A.; Dorenbos, P.; van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U. New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr6:Ce3+. IEEE Trans. Nucl. Sci. 2004, 51, 2970–2972. [Google Scholar] [CrossRef] [Green Version]
Eu Concentration, form. u. | a, Å | c, Å | v, Å |
---|---|---|---|
0.0006 | 5.0467(8) | 6.4813(15) | 165.08(7) |
0.0023 | 5.0464(9) | 6.482(14) | 165.07(7) |
0.0050 | 5.0472(6) | 6.4826(9) | 165.14(5) |
0.0137 | 5.0472(7) | 6.4834(12) | 165.16(6) |
0.0329 | 5.0463(8) | 6.4859(15) | 165.16(7) |
[Eu], f.u. | τ, ns | p, % | τ * Effective, ns |
---|---|---|---|
0.0006 | 512.7 | 100 | 512.7 |
0.0023 | 89.0 | 2 | 473.7 |
514.0 | 98 | ||
0.0050 | 482.7 | 94 | 393.8 |
91.5 | 6 | ||
0.0137 | 458.1 | 78 | 262.1 |
167.0 | 20 | ||
22.1 | 2.00 | ||
0.0329 | 352.7 | 56 | 138.0 |
122.9 | 38 | ||
24.3 | 6 |
[Eu], f.u. | Peak Center Position, Channel | Light Yield, ph./MeV | Light Yield, ph./n |
---|---|---|---|
0.0006 | 627 | 16,700 | 80,200 |
0.0023 | 811 | 21,600 | 103,600 |
0.0050 | 548 | 14,600 | 70,100 |
0.0137 | 327 | 8700 | 41,800 |
0.0329 | 78 | 2080 | 10,000 |
YAG:Ce | 225 | 6000 | - |
[Eu], f.u. | τ, ns | p, % | τ Effective, ns |
---|---|---|---|
0.0006 | 40.7 | 22.89 | 108.1 |
130.1 | 39.84 | ||
660.4 | 37.27 | ||
0.0023 | 48.7 | 20.39 | 156.7 |
192.9 | 37.67 | ||
1729.3 | 41.94 | ||
0.0050 | 38.6 | 16.18 | 144.1 |
148 | 35.95 | ||
1499.6 | 47.87 | ||
0.0137 | 23.6 | 13.98 | 99.6 |
103.3 | 34.02 | ||
631.7 | 52.00 | ||
0.0329 | 19.1 | 14.10 | 96.8 |
106 | 24.30 | ||
932 | 61.60 |
Nominal Eu Concentration, Form. u. | [Ca] Measured, % Mass | [Eu] Measured, % Mass | Real Eu Concentration, Form. u. |
---|---|---|---|
0.0005 | 37.62 | 0.082 | 0.0006 |
0.002 | 31.03 | 0.274 | 0.0023 |
0.005 | 39.02 | 0.723 | 0.0050 |
0.008 | 28.72 | 1.515 | 0.0137 |
0.032 | 32.26 | 4.158 | 0.0329 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komendo, I.; Mechinsky, V.; Fedorov, A.; Dosovitskiy, G.; Schukin, V.; Kuznetsova, D.; Zykova, M.; Velikodny, Y.; Korjik, M. Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection. Inorganics 2022, 10, 127. https://doi.org/10.3390/inorganics10090127
Komendo I, Mechinsky V, Fedorov A, Dosovitskiy G, Schukin V, Kuznetsova D, Zykova M, Velikodny Y, Korjik M. Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection. Inorganics. 2022; 10(9):127. https://doi.org/10.3390/inorganics10090127
Chicago/Turabian StyleKomendo, Ilia, Vitaly Mechinsky, Andrei Fedorov, Georgy Dosovitskiy, Victor Schukin, Daria Kuznetsova, Marina Zykova, Yury Velikodny, and Mikhail Korjik. 2022. "Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection" Inorganics 10, no. 9: 127. https://doi.org/10.3390/inorganics10090127
APA StyleKomendo, I., Mechinsky, V., Fedorov, A., Dosovitskiy, G., Schukin, V., Kuznetsova, D., Zykova, M., Velikodny, Y., & Korjik, M. (2022). Effect of the Synthesis Conditions on the Morphology, Luminescence and Scintillation Properties of a New Light Scintillation Material Li2CaSiO4:Eu2+ for Neutron and Charged Particle Detection. Inorganics, 10(9), 127. https://doi.org/10.3390/inorganics10090127