Highly Wrinkled Porous Polypyrrole for the Enhancement of the Performance of an Fe2S3-Fe2O3/poly-O-amino Benzenethiol Supercapacitor from a Basic Medium
Abstract
:1. Introduction
2. Results and Discussion
SC Electrochemical Study
3. Experimental Section
3.1. Materials
3.2. POABT and Fe2S3-Fe2O3/POABT Nanocomposite
3.3. SC Fabrication
3.4. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kurzweil, P. Supercapacitors: Solid-State and Polymer Technology. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Sowmiya, G.; Velraj, G. Design of Hollow Nanosphere Structured Polypyrrole/Sn and SnO2 Nanoparticles by COP Approach for Enhanced Electron Transport Behavior. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5217–5223. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Asymmetric Supercapacitor of Functionalised Electrospun Carbon Fibers/Poly(3,4-Ethylenedioxythiophene)/Manganese Oxide//Activated Carbon with Superior Electrochemical Performance. Sci. Rep. 2019, 9, 16782. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, J.; Guo, X.; Yang, S.; Ozen, M.O.; Chen, P.; Liu, X.; Du, W.; Xiao, F.; Demirci, U.; et al. Multi-Stimuli-Responsive Programmable Biomimetic Actuator. Nat. Commun. 2019, 10, 4087. [Google Scholar] [CrossRef]
- Obodo, R.M.; Nwanya, A.C.; Iroegbu, C.; Ahmad, I.; Ekwealor, A.B.C.; Osuji, R.U.; Maaza, M.; Ezema, F.I. Transformation of GO to RGO Due to 8.0 MeV Carbon (C++) Ions Irradiation and Characteristics Performance on MnO2–NiO–ZnO@GO Electrode. Int. J. Energy Res. 2020, 44, 6792–6803. [Google Scholar] [CrossRef]
- Obodo, R.M.; Onah, E.O.; Nsude, H.E.; Agbogu, A.; Nwanya, A.C.; Ahmad, I.; Zhao, T.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Performance Evaluation of Graphene Oxide Based Co3O4@GO, MnO2@GO and Co3O4/MnO2@GO Electrodes for Supercapacitors. Electroanalysis 2020, 32, 2786–2794. [Google Scholar] [CrossRef]
- Feng, M.; Lu, W.; Zhou, Y.; Zhen, R.; He, H.; Wang, Y.; Li, C. Synthesis of Polypyrrole/Nitrogen-Doped Porous Carbon Matrix Composite as the Electrode Material for Supercapacitors. Sci. Rep. 2020, 10, 15370. [Google Scholar] [CrossRef]
- Atta, A.; Abdelhamied, M.M.; Essam, D.; Shaban, M.; Alshammari, A.H.; Rabia, M. Structural and Physical Properties of Polyaniline/Silver Oxide/Silver Nanocomposite Electrode for Supercapacitor Applications. Int. J. Energy Res. 2022, 46, 6702–6710. [Google Scholar] [CrossRef]
- Ben Gouider Trabelsi, A.; Elsayed, A.M.; Alkallas, F.H.; Al-Noaimi, M.; Kusmartsev, F.V.; Rabia, M. A Fractal, Flower Petal-like CuS-CuO/G-C3N4 Nanocomposite for High Efficiency Supercapacitors. Coatings 2022, 12, 1834. [Google Scholar] [CrossRef]
- Rabia, M.; Essam, D.; Alkallas, F.H.; Shaban, M.; Elaissi, S.; Ben Gouider Trabelsi, A. Flower-Shaped CoS-Co2O3/G-C3N4 Nanocomposite for Two-Symmetric-Electrodes Supercapacitor of High Capacitance Efficiency Examined in Basic and Acidic Mediums. Micromachines 2022, 13, 2234. [Google Scholar] [CrossRef]
- Sambath Kumar, K.; Cherusseri, J.; Thomas, J. Two-Dimensional Mn3O4 Nanowalls Grown on Carbon Fibers as Electrodes for Flexible Supercapacitors. ACS Omega 2019, 4, 4472–4480. [Google Scholar] [CrossRef] [PubMed]
- Acharya, D.; Pathak, I.; Muthurasu, A.; Bhattarai, R.M.; Kim, T.; Ko, T.H.; Saidin, S.; Chhetri, K.; Kim, H.Y. In Situ Transmogrification of Nanoarchitectured Fe-MOFs Decorated Porous Carbon Nanofibers into Efficient Positrode for Asymmetric Supercapacitor Application. J. Energy Storage 2023, 63, 106992. [Google Scholar] [CrossRef]
- Chen, X.; Ge, H.; Yang, W.; Liu, J.; Yang, P. Construction of High-Performance Solid-State Asymmetric Supercapacitor Based on Ti3C2Tx MXene/CuS Positive Electrode and Fe2O3@rGO Negative Electrode. J. Energy Storage 2023, 68, 107700. [Google Scholar] [CrossRef]
- Mummoorthi, G.; Arjunan, S.; Selvaraj, M.; Rokhum, S.L.; Mani, N.; Periyasamy, S.; Rajendran, R. High-Performance Solid-State Asymmetric Supercapacitor Based on α-Fe2O3/r-GO/GCN Composite Electrode Material for Energy Storage Application. Surf. Interfaces 2023, 41, 103166. [Google Scholar] [CrossRef]
- An, N.; Zhou, L.; Li, W.; Yuan, X.; Zhao, L.; Huang, J.; Zhang, Y.; She, H.; Wang, L.; Wang, Q. Multifunctional Polymer Coating Cooperated with γ-Fe2O3 for Boosting Photoelectrochemical Water Oxidation. Appl. Catal. B Environ. 2022, 318, 121869. [Google Scholar] [CrossRef]
- Sun, B.; Yao, M.; Chen, Y.; Tang, X.; Hu, W.; Pillai, S.C. Facile Fabrication of Flower-like γ-Fe2O3 @PPy from Iron Rust for High-Performing Asymmetric Supercapacitors. J. Alloys Compd. 2022, 922, 166055. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.; Liang, L.; Li, N. N-Doped/Oxygen-Deficient Fe2O3−x @PEDOT Cruciform Nanosheet Arrays: Boosting the Performance of All-Solid-State Flexible Supercapacitors. Chem. Phys. Lett. 2023, 823, 140515. [Google Scholar] [CrossRef]
- Acharya, D.; Muthurasu, A.; Ko, T.H.; Bhattarai, R.M.; Kim, T.; Chae, S.-H.; Saidin, S.; Chhetri, K.; Kim, H.Y. Iron MOF-Derived Fe2O3 /NPC Decorated on MIL-88A Converted Fe3C Implanted Electrospun Porous Carbon Nanofibers for Symmetric Supercapacitors. ACS Appl. Energy Mater. 2023. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Tsai, M.-D.; Shen, C.-H.; Huang, C.-W.; Wang, Y.-C.; Kung, C.-W. Cerium-Based Metal–Organic Framework-Conducting Polymer Nanocomposites for Supercapacitors. Mater. Today Sustain. 2023, 23, 100449. [Google Scholar] [CrossRef]
- Siva, V.; Murugan, A.; Shameem, A.; Anandha Jothi, M.; Kannan, S. Nanoscale Zn-MOF Enwrapped Polymer Nanocomposite as Electrode Material for Enhanced Energy Storage System. Inorg. Chem. Commun. 2023, 154, 110986. [Google Scholar] [CrossRef]
- Dědek, I.; Kupka, V.; Jakubec, P.; Šedajová, V.; Jayaramulu, K.; Otyepka, M. Metal-Organic Framework/Conductive Polymer Hybrid Materials for Supercapacitors. Appl. Mater. Today 2022, 26, 101387. [Google Scholar] [CrossRef]
- Etman, A.E.S.; Ibrahim, A.M.; Darwish, F.A.Z.M.; Qasim, K.F. A 10 Years-Developmental Study on Conducting Polymers Composites for Supercapacitors Electrodes: A Review for Extensive Data Interpretation. J. Ind. Eng. Chem. 2023, 122, 27–45. [Google Scholar] [CrossRef]
- Siva, V.; Murugan, A.; Shameem, A.; Thangarasu, S.; Kannan, S.; Raja, A. Gel Combustion Synthesized NiMoO4 Anchored Polymer Nanocomposites as a Flexible Electrode Material for Solid State Asymmetric Supercapacitors. Int. J. Hydrogen Energy 2023, 48, 18856–18870. [Google Scholar] [CrossRef]
- El Nady, J.; Shokry, A.; Khalil, M.; Ebrahim, S.; Elshaer, A.M.; Anas, M. One-Step Electrodeposition of a Polypyrrole/NiO Nanocomposite as a Supercapacitor Electrode. Sci. Rep. 2022, 12, 3611. [Google Scholar] [CrossRef] [PubMed]
- Nagamuthu, S.; Ryu, K.S. Synthesis of Ag/NiO Honeycomb Structured Nanoarrays as the Electrode Material for High Performance Asymmetric Supercapacitor Devices. Sci. Rep. 2019, 9, 4864. [Google Scholar] [CrossRef] [PubMed]
- Kumar Kuila, S.; Ghorai, A.; Midya, A.; Sekhar Tiwary, C.; Kumar Kundu, T. Chemisorption of Gadolinium Ions on 2D-Graphitic Carbon Nitride Nanosheet for Enhanced Solid-State Supercapacitor Performance. Chem. Phys. Lett. 2022, 796, 139572. [Google Scholar] [CrossRef]
- Islam, R.U.; Taher, A.; Choudhary, M.; Siwal, S.; Mallick, K. Polymer Immobilized Cu(I) Formation and Azide-Alkyne Cycloaddition: A One Potreaction. Sci. Rep. 2015, 5, 9632. [Google Scholar] [CrossRef]
- Fang, H.; Meng, F.; Yan, J.; Chen, G.Y.; Zhang, L.; Wu, S.; Zhang, S.; Wang, L.; Zhang, Y. Fe3O4 Hard Templating to Assemble Highly Wrinkled Graphene Sheets into Hierarchical Porous Film for Compact Capacitive Energy Storage. RSC Adv. 2019, 9, 20107–20112. [Google Scholar] [CrossRef]
- Almanqur, L.; Vitorica-Yrezabal, I.; Whitehead, G.; Lewis, D.J.; O’Brien, P. Synthesis of Nanostructured Powders and Thin Films of Iron Sulfide from Molecular Precursors. RSC Adv. 2018, 8, 29096–29103. [Google Scholar] [CrossRef]
- Chu, Y.; Wang, P.; Ding, Y.; Lin, J.; Zhu, X.; Zhao, S.; Jin, H.; Zeng, T. High-Capacity Sb/Fe2S3 Sodium-Ion Battery Anodes Fabricated by a One-Step Redox Reaction, Followed by Ball Milling with Graphite. ACS Appl. Mater. Interfaces 2023. [Google Scholar] [CrossRef]
- Boomi, P.; Anandha Raj, J.; Palaniappan, S.P.; Poorani, G.; Selvam, S.; Gurumallesh Prabu, H.; Manisankar, P.; Jeyakanthan, J.; Langeswaran, V.K. Improved Conductivity and Antibacterial Activity of Poly(2-Aminothiophenol)-Silver Nanocomposite against Human Pathogens. J. Photochem. Photobiol. B Biol. 2018, 178, 323–329. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Xu, Q.; Wu, X.K.; Xu, G.D.; Guo, J.X.; Fang, D. Fabrication of In2S3/MIL-68(In) Heterojunction Composite Photocatalysts for Degradation of Rhodamine B and Hydrogen Evolution. J. Porous Mater. 2022, 29, 181–192. [Google Scholar] [CrossRef]
- Lan, Y.; Butler, E.C. Iron-Sulfide-Associated Products Formed during Reductive Dechlorination of Carbon Tetrachloride. Environ. Sci. Technol. 2016, 50, 5489–5497. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Han, B.; Chen, G.; Wang, L.; Wang, Y. Preparation and Electrochemical Performances of Carbon Sphere@ZnO Core-Shell Nanocomposites for Supercapacitor Applications. Sci. Rep. 2017, 7, 40167. [Google Scholar] [CrossRef] [PubMed]
- Pandit, B.; Sankapal, B.R.; Koinkar, P.M. Novel Chemical Route for CeO2/MWCNTs Composite towards Highly Bendable Solid-State Supercapacitor Device. Sci. Rep. 2019, 9, 5892. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Huang, Z.H.; Yang, Y.; Shen, W.; Zheng, Y.; Sun, H.; Kang, F. Porous Mesocarbon Microbeads with Graphitic Shells: Constructing a High-Rate, High-Capacity Cathode for Hybrid Supercapacitor. Sci. Rep. 2013, 3, 2477. [Google Scholar] [CrossRef]
- Mai, L.Q.; Yang, F.; Zhao, Y.L.; Xu, X.; Xu, L.; Luo, Y.Z. Hierarchical MnMoO4/CoMoO4 Heterostructured Nanowires with Enhanced Supercapacitor Performance. Nat. Commun. 2011, 2, 381. [Google Scholar] [CrossRef]
- Gamal, A.; Shaban, M.; BinSabt, M.; Moussa, M.; Ahmed, A.M.; Rabia, M.; Hamdy, H. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. Nanomaterials 2022, 12, 817. [Google Scholar] [CrossRef]
- Atta, A.; Negm, H.; Abdeltwab, E.; Rabia, M.; Abdelhamied, M.M. Facile Fabrication of Polypyrrole/NiOx Core-Shell Nanocomposites for Hydrogen Production from Wastewater. Polym. Adv. Technol. 2023, 34, 1633–1641. [Google Scholar] [CrossRef]
- Rabia, M.; Mohamed, S.H.; Zhao, H.; Shaban, M.; Lei, Y.; Ahmed, A.M. TiO2/TiOxNY Hollow Mushrooms-like Nanocomposite Photoanode for Hydrogen Electrogeneration. J. Porous Mater. 2020, 27, 133–139. [Google Scholar] [CrossRef]
- A Sensor of M-cresol Nanopolymer/Pt-electrode Film for Detection of Lead Ions by Potentiometric Methods—Sayyah—2018—Advances in Polymer Technology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/adv.21788 (accessed on 1 November 2020).
- Electropolymerization of M-Toluidin on Platinum Electrode from Aqueous Acidic Solution and Character of the Obtained Polymer—Sayyah—2018—Advances in Polymer Technology—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1002/adv.21649 (accessed on 1 November 2020).
- Su, W.; Lang, M.; Zhang, Q.; Yang, Y.; Li, H.; Zhang, F. Vertically Aligned MoS2 Nanosheets on Monodisperse MXene as Electrolyte-Philic Cathodes for Zinc Ion Batteries with Enhanced Capacity. RSC Adv. 2023, 13, 17914–17922. [Google Scholar] [CrossRef] [PubMed]
- Balogun, M.S.; Huang, Y.; Qiu, W.; Yang, H.; Ji, H.; Tong, Y. Updates on the Development of Nanostructured Transition Metal Nitrides for Electrochemical Energy Storage and Water Splitting. Mater. Today 2017, 20, 425–451. [Google Scholar] [CrossRef]
- Elsayed, A.M.; Alnuwaiser, M.A.; Rabia, M. Effect of Polypyrrole on the Capacitance Enhancement of the Spherical ZnS-ZnO/G-C3N4 Nanocomposite for Supercapacitor Applications. J. Inorg. Organomet. Polym. Mater. 2023. [Google Scholar] [CrossRef]
- Morales, M.A.; Paiva, W.A.; Marvin, L.; Balog, E.R.M.; Halpern, J.M. Electrochemical Characterization of the Stimuli-Response of Surface-Immobilized Elastin-like Polymers. Soft Matter. 2019, 15, 9640–9646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabia, M.; Abdallah Alnuwaiser, M.; Hasan, F.; Adel A. Abdelazeez, A. Highly Wrinkled Porous Polypyrrole for the Enhancement of the Performance of an Fe2S3-Fe2O3/poly-O-amino Benzenethiol Supercapacitor from a Basic Medium. Inorganics 2023, 11, 402. https://doi.org/10.3390/inorganics11100402
Rabia M, Abdallah Alnuwaiser M, Hasan F, Adel A. Abdelazeez A. Highly Wrinkled Porous Polypyrrole for the Enhancement of the Performance of an Fe2S3-Fe2O3/poly-O-amino Benzenethiol Supercapacitor from a Basic Medium. Inorganics. 2023; 11(10):402. https://doi.org/10.3390/inorganics11100402
Chicago/Turabian StyleRabia, Mohamed, Maha Abdallah Alnuwaiser, Fuead Hasan, and Ahmed Adel A. Abdelazeez. 2023. "Highly Wrinkled Porous Polypyrrole for the Enhancement of the Performance of an Fe2S3-Fe2O3/poly-O-amino Benzenethiol Supercapacitor from a Basic Medium" Inorganics 11, no. 10: 402. https://doi.org/10.3390/inorganics11100402
APA StyleRabia, M., Abdallah Alnuwaiser, M., Hasan, F., & Adel A. Abdelazeez, A. (2023). Highly Wrinkled Porous Polypyrrole for the Enhancement of the Performance of an Fe2S3-Fe2O3/poly-O-amino Benzenethiol Supercapacitor from a Basic Medium. Inorganics, 11(10), 402. https://doi.org/10.3390/inorganics11100402