Nanocomposites for Photocatalysis
1. Introduction
2. Sn(IV)porphyrin-Anchored TiO2 Nanoparticles via Axial-Ligand Coordination for Enhancement of Visible-Light-Activated Photocatalytic Degradation
3. Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study
4. Photocatalytic Reduction of Cr(VI) to Cr(III) and Photocatalytic Degradation of Methylene Blue and Antifungal Activity of Ag/TiO2 Composites Synthesized via the Template-Induced Route
5. Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production
6. Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes
7. Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description, and Adsorption Mechanism
8. Co, Cu, Fe, and Ni Deposited over TiO2 and Their Photocatalytic Activity in the Degradation of 2,4-Dichlorophenol and 2,4-Dichlorophenoxyacetic Acid
9. Photocatalytic Evaluation of TiOx Films Produced via Cathodic Arc-PVD with Silver Addition via UVC Photo-Reduction Method
10. Synergistic Correlation in the Colloidal Properties of TiO2 Nanoparticles and Its Impact on the Photocatalytic Activity
11. TiO2-La2O3 as Photocatalyst in the Degradation of Naproxen
12. Effect of Temperature on the Adhesion and Bactericidal Activities of Ag+-Doped BiVO4 Ceramic Tiles
13. Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review
14. Preparation and Real-World Applications of Titania Composite Materials for Photocatalytic Surface, Air, and Water Purification: the State of the Art
Funding
Conflicts of Interest
References
- Shee, N.K.; Kim, H.-J. Sn(IV)porphyrin-Anchored TiO2 Nanoparticles via Axial-Ligand Coordination for Enhancement of Visible Light-Activated Photocatalytic Degradation. Inorganics 2023, 11, 336. [Google Scholar] [CrossRef]
- Alorku, K.; Manoj, M.; Yanjuan, C.; Zhou, H.; Yuan, A. Nanomixture of 0-D ternary metal oxides (TiO2– SnO2–Al2O3) cooperating with 1-D hydroxyapatite (HAp) nanorods for RhB removal from synthetic wastewater and hydrogen evolution via water splitting. Chemosphere 2020, 273, 128575. [Google Scholar] [CrossRef]
- Ramzan, M.; Javed, M.; Iqbal, S.; Alhujaily, A.; Mahmood, Q.; Aroosh, K.; Bahadur, A.; Qayyum, M.A.; Awwad, N.S.; Ibrahium, H.A.; et al. Designing Highly Active S-g-C3N4/Te@NiS Ternary Nanocomposites for Antimicrobial Performance, Degradation of Organic Pollutants, and Their Kinetic Study. Inorganics 2023, 11, 156. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Iqbal, S.; Sher, M.; Akbar, M.B. Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. A Chem. 2020, 401, 112776. [Google Scholar] [CrossRef]
- Zahid, Z.; Rauf, A.; Javed, M.; Alhujaily, A.; Iqbal, S.; Amjad, A.; Arif, M.; Hussain, S.; Bahadur, A.; Awwad, N.S.; et al. Photocatalytic Reduction of Cr(VI) to Cr(III) and Photocatalytic Degradation of Methylene Blue and Antifungal Activity of Ag/TiO2 Composites Synthesized via the Template Induced Route. Inorganics 2023, 11, 133. [Google Scholar] [CrossRef]
- Xuan, T.N.; Thi, D.N.; Ngoc, T.N.; Quoc, K.D.; Németh, M.; Mukhtar, S.; Horváth, O. Effect of Ruthenium Modification of g-C3N4 in the Visible-Light-Driven Photocatalytic Reduction of Cr(VI). Catalysts 2023, 13, 964. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Ababtain, A.S.; Alanazi, H.S.; Al-Nafaei, W.S.; Hasan, I. Synthesis of Zn3V2O8/rGO Nanocomposite for Photocatalytic Hydrogen Production. Inorganics 2023, 11, 93. [Google Scholar] [CrossRef]
- Tien, T.-M.; Chen, E.L. A Novel ZnO/Co3O4 Nanoparticle for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Catalysts 2023, 13, 852. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Ababtain, A.S.; Aldubeikl, H.K.; Alanazi, H.S.; Hasan, I. Synthesis of Novel Zn3V2O8/Ag Nanocom-posite for Efficient Photocatalytic Hydrogen Production. Catalysts 2023, 13, 455. [Google Scholar] [CrossRef]
- Alharthi, F.A.; Ababtain, A.S.; Aldubeikl, H.K.; Alanazi, H.S.; Hasan, I. Deep Eutectic Solvent-Mediated Synthesis of Ni3V2O8/N-Doped RGO for Visible-Light-Driven H2 Evolution and Simultaneous Degradation of Dyes. Inorganics 2023, 11, 67. [Google Scholar] [CrossRef]
- Ponce, S.; Murillo, H.A.; Alexis, F.; Alvarez-Barreto, J.; Mora, J.R. Green Synthesis of Nanoparticles Mediated by Deep Eutectic Solvents and Their Applications in Water Treatment. Sustainability 2023, 15, 9703. [Google Scholar] [CrossRef]
- Długosz, O. Natural Deep Eutectic Solvents in the Synthesis of Inorganic Nanoparticles. Materials 2023, 16, 627. [Google Scholar] [CrossRef] [PubMed]
- Modwi, A.; Elamin, M.R.; Idriss, H.; Elamin, N.Y.; Adam, F.A.; Albadri, A.E.; Abdulkhair, B.Y. Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism. Inorganics 2022, 10, 210. [Google Scholar] [CrossRef]
- Said, R.B.; Rahali, S.; Ben Aissa, M.A.; Albadri, A.; Modwi, A. Uptake of BF Dye from the Aqueous Phase by CaO-g-C3N4 Nanosorbent: Construction, Descriptions, and Recyclability. Inorganics 2023, 11, 44. [Google Scholar] [CrossRef]
- Limón-Rocha, I.; Marizcal-Barba, A.; Guzmán-González, C.A.; Anaya-Esparza, L.M.; Ghotekar, S.; González-Vargas, O.A.; Pérez-Larios, A. Co, Cu, Fe, and Ni Deposited over TiO2 and Their Photocatalytic Activity in the Degradation of 2,4-Dichlorophenol and 2,4-Dichlorophenoxyacetic Acid. Inorganics 2022, 10, 157. [Google Scholar] [CrossRef]
- Rodríguez, J.L.; Valenzuela, M.A.; Pola, F.; Tiznado, H.; Poznyak, T. Photodeposition of Ni nanoparticles on TiO2 and their application in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid. J. Mol. Catal. A Chem. 2012, 353–354, 29–36. [Google Scholar] [CrossRef]
- Raya-Tapia, A.Y.; Ung-Medina, F.; Mondragón-Rodríguez, G.C.; Rivera-Muñoz, E.M.; Apolinar-Cortés, J.; Méndez, F.J.; Huirache-Acuña, R. Photocatalytic Evaluation of TiOx Films Produced by Cathodic Arc-PVD with Silver Addition by UVC Photo-Reduction Method. Inorganics 2022, 10, 148. [Google Scholar] [CrossRef]
- Kleiman, A.; Meichtry, J.; Vega, D.; Litter, M.; Márquez, A. Photocatalytic activity of TiO2 films prepared by cathodic arc deposition: Dependence on thickness and reuse of the photocatalysts. Surf. Coatings Technol. 2020, 382, 125154. [Google Scholar] [CrossRef]
- Ceballos-Chuc, M.C.; Ramos-Castillo, C.M.; Rodríguez-Pérez, M.; Ruiz-Gómez, M.; Rodríguez-Gattorno, G.; Villanueva-Cab, J. Synergistic Correlation in the Colloidal Properties of TiO2 Nanoparticles and Its Impact on the Photocatalytic Activity. Inorganics 2022, 10, 125. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Lee, T.-G.; Hwangbo, S.-A.; Jeong, J.-R. Effect of the TiO2 Colloidal Size Distribution on the Degradation of Methylene Blue. Nanomaterials 2023, 13, 302. [Google Scholar] [CrossRef]
- Marizcal-Barba, A.; Limón-Rocha, I.; Barrera, A.; Casillas, J.E.; González-Vargas, O.A.; Rico, J.L.; Martinez-Gómez, C.; Pérez-Larios, A. TiO2-La2O3 as Photocatalysts in the Degradation of Naproxen. Inorganics 2022, 10, 67. [Google Scholar] [CrossRef]
- Sudhagar, S.; Kumar, S.S.; Premkumar, I.I.; Vijayan, V.; Venkatesh, R.; Rajkumar, S.; Singh, M. UV-and visi-ble-light-driven TiO2/La2O3 and TiO2/Al2O3 nanocatalysts: Synthesis and enhanced photocatalytic activity. Appl. Phys. A 2022, 128, 282. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Wang, H.; Fu, S.; Lv, X.; He, Q.; Liu, R.; Ji, F.; Xu, X. Effect of Temperature on the Adhesion and Bactericidal Activities of Ag+-Doped BiVO4 Ceramic Tiles. Inorganics 2022, 10, 61. [Google Scholar] [CrossRef]
- Wang, M.; Wu, L.; Zhang, F.; Gao, L.; Geng, L.; Ge, J.; Tian, K.; Chai, H.; Niu, H.; Liu, Y.; et al. Doping with Rare Earth Elements and Loading Cocatalysts to Improve the Solar Water Splitting Performance of BiVO4. Inorganics 2023, 11, 203. [Google Scholar] [CrossRef]
- Kazemi, M.; Zirak, M.; Alehdaghi, H.; Baghayeri, M.; Nodehi, M.; Baedi, J.; Rabiee, N. Toward preparation of large scale and uniform mesoporous BiVO4 thin films with enhanced photostability for solar water splitting. J. Alloy. Compd. 2023, 969, 172409. [Google Scholar] [CrossRef]
- Dutta, V.; Verma, R.; Gopalkrishnan, C.; Yuan, M.-H.; Batoo, K.M.; Jayavel, R.; Chauhan, A.; Lin, K.-Y.A.; Balasubramani, R.; Ghotekar, S. Bio-Inspired Synthesis of Carbon-Based Nanomaterials and Their Potential Environmental Applications: A State-of-the-Art Review. Inorganics 2022, 10, 169. [Google Scholar] [CrossRef]
- Pagar, K.; Chavan, K.; Kasav, S.; Basnet, P.; Rahdar, A.; Kataria, N.; Oza, R.; Abhale, Y.; Ravindran, B.; Pardeshi, O.; et al. Bio-inspired synthesis of CdO nanoparticles using Citrus limetta peel extract and their diverse biomedical applications. J. Drug Deliv. Sci. Technol. 2023, 82, 104373. [Google Scholar] [CrossRef]
- Mubarik, S.; Qureshi, N.; Sattar, Z.; Shaheen, A.; Kalsoom, A.; Imran, M.; Hanif, F. Synthetic Approach to Rice Waste-Derived Carbon-Based Nanomaterials and Their Applications. Nanomanufacturing 2021, 1, 109–159. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Zhang, H.; Wang, Z.; Fan, C.; Zang, L. Recent achievements in enhancing anaerobic digestion with carbon- based functional materials. Bioresour. Technol. 2018, 266, 555–567. [Google Scholar] [CrossRef]
- Talreja, N.; Chauhan, D.; Ashfaq, M. Carbon-Based Hybrid Materials for Remediation Technology. In Emerging Contaminants and Plants: Interactions, Adaptations and Remediation Technologies; Springer International Publishing: Cham, Switzerland, 2023; pp. 333–349. [Google Scholar]
- Seiß, V.; Thiel, S.; Eichelbaum, M. Preparation and Real World Applications of Titania Composite Materials for Photocatalytic Surface, Air, and Water Purification: State of the Art. Inorganics 2022, 10, 139. [Google Scholar] [CrossRef]
- Arun, J.; Nachiappan, S.; Rangarajan, G.; Alagappan, R.P.; Gopinath, K.P.; Lichtfouse, E. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review. Environ. Chem. Lett. 2023, 21, 339–362. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Larios, A.; Varghese, O.K. Nanocomposites for Photocatalysis. Inorganics 2023, 11, 404. https://doi.org/10.3390/inorganics11100404
Perez-Larios A, Varghese OK. Nanocomposites for Photocatalysis. Inorganics. 2023; 11(10):404. https://doi.org/10.3390/inorganics11100404
Chicago/Turabian StylePerez-Larios, Alejandro, and Oomman K. Varghese. 2023. "Nanocomposites for Photocatalysis" Inorganics 11, no. 10: 404. https://doi.org/10.3390/inorganics11100404
APA StylePerez-Larios, A., & Varghese, O. K. (2023). Nanocomposites for Photocatalysis. Inorganics, 11(10), 404. https://doi.org/10.3390/inorganics11100404