Structural and Photoluminescent Properties of a Novel Terbium Bis(thiocyanato)aurate, Tb[Au(SCN)2]3·6H2O
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Synthesis of Tb[Au(SCN)2]3·6H2O
2.2. Single-Crystal X-ray Diffraction Studies
2.3. Luminescence Measurements
3. Results and Discussion
3.1. Structural Studies
3.2. Luminescence Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839–1854. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar] [CrossRef] [PubMed]
- Kuriki, K.; Koike, Y.; Okamoto, Y. Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem. Rev. 2002, 102, 2347–2356. [Google Scholar] [CrossRef]
- Molloy, J.K.; Lincheneau, C.; Karimdjy, M.M.; Agnese, F.; Mattera, L.; Gateau, C.; Reiss, P.; Imbert, D.; Mazzanti, M. Sensitisation of visible and NIR lanthanide emission by InPZnS quantum dots in bi-luminescent hybrids. Chem. Commun. 2016, 52, 4577–4580. [Google Scholar] [CrossRef]
- Swabeck, J.K.; Fischer, S.; Bronstein, N.D.; Alivisatos, A.P. Broadband Sensitization of Lanthanide Emission with Indium Phosphide Quantum Dots for Visible to Near-Infrared Downshifting. J. Am. Chem. Soc. 2018, 140, 9120–9126. [Google Scholar] [CrossRef]
- Moore, E.G.; Samuel, A.P.S.; Raymond, K.N. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Acc. Chem. Res. 2009, 42, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.E.; Ohodnicki, P.R., Jr.; Baltrus, J.P. Materials for the photoluminescent sensing of rare earth elements: Challenges and opportunities. J. Mater. Chem. C 2020, 8, 7975–8006. [Google Scholar] [CrossRef]
- White, F.; Pham, L.N.; Xiang, K.R.; Thomas, R.; Vogel, P.; Crawford, C.; Assefa, Z.; Sykora, R.E. Synthesis, structures, and photoluminescence properties of lanthanide dicyanoaurates containing dimeric aurophilic interactions. Inorg. Chim. Acta 2014, 414, 240–249. [Google Scholar] [CrossRef]
- Guo, Z.; Yson, R.L.; Patterson, H.H. Solvent dependent tunable energy transfer of d10 metal dicyanide nanoclusters with Eu3+ and Tb3+ rare earth ions. Chem. Phys. Lett. 2007, 445, 340–344. [Google Scholar] [CrossRef]
- Seifert, T.P.; Naina, V.R.; Feuerstein, T.J.; Knöfel, N.D.; Roesky, P.W. Molecular gold strings: Aurophilicity, luminescence and structure-property correlations. Nanoscale 2020, 12, 20065–20088. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Raubenheimer, H.G. Excimer and Exciplex Formation in Gold(I) Complexes Preconditioned by Aurophilic Interactions. Angew. Chem. Int. Ed. 2020, 59, 14748–14771. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Larochelle, C.L.; Patterson, H.H. Tunable Energy Transfer from Dicyanoaurate(I) and Dicyanoargentate(I) Donor Ions to Terbium(III) Acceptor Ions in Pure Crystals. Inorg. Chem. 2000, 39, 4527–4534. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Omary, M.A.; Patterson, H.H. Oligomerization of Au(CN)2− and Ag(CN)2− Ions in Solution via Ground-State Aurophilic and Argentophilic Bonding. J. Am. Chem. Soc. 2000, 122, 10371–10380. [Google Scholar] [CrossRef]
- Assefa, Z.; Shankle, G.; Patterson, H.H.; Reynolds, R. Photoluminescence studies of lanthanide ion complexes of gold and silver dicyanides: A new low-dimensional solid state class for nonradiative excited-state energy transfer. Inorg. Chem. 1994, 33, 2187–2195. [Google Scholar] [CrossRef]
- Coker, N.L.; Bauer, J.A.K.; Elder, R.C. Emission Energy Correlates with Inverse of Gold-Gold Distance for Various [Au(SCN)2]− Salts. J. Am. Chem. Soc. 2004, 126, 12–13. [Google Scholar] [CrossRef]
- Arvapally, R.K.; Sinha, P.; Hettiarachchi, R.; Coker, N.; Bedel, C.E.; Patterson, H.H.; Elder, R.C.; Wilson, A.K.; Omary, M.A. Photophysics of bis(thiocyanato)gold(I) Complexes: Intriguing Structure-Luminescence Relationships. J. Phys. Chem. C 2007, 111, 10689–10699. [Google Scholar] [CrossRef]
- LeBlanc, J.D. Thiol Complexes of Gold(I): Structure and Chemistry of the Gold Based Antiarthritis Drugs. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 1996. [Google Scholar]
- Agilent. Crysalis PRO; Agilent Technologies Ltd.: Oxfordshire, UK, 2013. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Pathaneni, S.S.; Desiraju, G.R. Database Analysis of Au‧‧‧Au Interactions. J. Chem. Soc. Dalton Trans. 1993, 319–322. [Google Scholar] [CrossRef]
- Anderson, K.M.; Goeta, A.E.; Steed, J.W. Au‧‧‧Au Interactions: Z’ > 1 Behavior and Structural Analysis. Inorg. Chem. 2007, 46, 6444–6451. [Google Scholar] [CrossRef]
- Back, A.D.; Stroud, T.L.; Schroll, C.A.; Coker, N.L.; Krause, J.A. {Ba[Au(SCN)2]2}n: A three-dimensional net comprised of monomeric and trimeric gold(I) units. Acta Cryst. Sect. E 2010, E66, m765–m766. [Google Scholar] [CrossRef]
- Assefa, Z.; Kalachnikova, K.; Haire, R.G.; Sykora, R.E. Hydrothermal synthesis, structural, Raman, and luminescence studies off Am[M(CN)2]‧3H2O and Nd[M(CN)2]3‧3H2O (M = Ag, Au): Bimetallic coordination polymers containing both trans-plutonium and transition metal elements. J. Solid State Chem. 2007, 180, 3121–3129. [Google Scholar] [CrossRef]
- Pells, J.A.; Guan, D.; Leznoff, D.B. Heterobimetallic Ln(III)-Containing Materials Based on One-Dimensional Aurophilic Chains of Gold(I) Dithiolate Dimers and Their Vapochromic Response to DMF. Eur. J. Inorg. Chem. 2022, 14, e202200049. [Google Scholar] [CrossRef]
- Hendrich, J.M.; White, F.D.; Sykora, R.E. Lanthanide dicyanoaurate coordination polymers containing 1,10-phenanthroline: Synthesis, structure, and luminescence. Inorg. Chim. Acta 2021, 527, 120562. [Google Scholar] [CrossRef]
- Schmidbaur, H. The Fascinating Implications of New Results in Gold Chemistry. Gold Bull. 1990, 23, 11–21. [Google Scholar] [CrossRef]
- Tanner, P.A.; Zhou, X.; Wong, W.-T.; Kratzer, C.; Yersin, H. Structure and Spectroscopy of Tb[Au(CN)2]3‧3H2O. J. Phys. Chem. B 2005, 109, 13083–13090. [Google Scholar] [CrossRef]
- Gregoret, L.M.; Rader, S.D.; Fletterick, R.J.; Cohen, F.E. Hydrogen bonds involving sulfur atoms in proteins. Proteins 1991, 9, 99–107. [Google Scholar] [CrossRef]
- van Bergen, L.A.H.; Alonso, M.; Palló, A.; Nilsson, L.; De Proft, F.; Messens, J. Revisiting sulfur H-bonds in proteins: The example of peroxiredoxin AhpE. Sci. Rep. 2016, 6, 30369. [Google Scholar] [CrossRef]
- Tchertanov, L.; Pascard, C. Statistical analysis of noncovalent interactions of anion groups in crystal structures. II. Hydrogen bonding of thiocyanate anions. Acta Cryst. B 1996, B52, 685–690. [Google Scholar] [CrossRef]
- Gruber, J.B.; Zandi, B.; Valiev, U.V.; Rakhimov, S.A. Crystal-field splitting of some quintet states of Tb3+ in aluminum garnets. Phys. Rev. B 2004, 69, 115103. [Google Scholar] [CrossRef]
- Ladner, L.; Ngo, T.; Crawford, C.; Assefa, Z.; Sykora, R.E. Solid-State Photoluminescence Sensitization of Tb3+ by Novel Au2Pt2 and Au2Pt4 Cyanide Clusters. Inorg. Chem. 2011, 50, 2199–2206. [Google Scholar] [CrossRef]
- Smith, P.A.; Crawford, C.; Beedoe, N.; Assefa, Z.; Sykora, R.E. Synthesis, Crystal Structures, and Dual Donor Luminescence Sensitization in Novel Terbium Tetracyanoplatinates. Inorg. Chem. 2012, 51, 12230–12241. [Google Scholar] [CrossRef]
Formula | C6H12Au3N6O6S6Tb |
---|---|
Formula weight (amu) | 1206.40 |
Crystal System | Orthorhombic |
Space group | Cmcm (No. 63) |
a (Å) | 12.4907(9) |
b (Å) | 8.5845(6) |
c (Å) | 20.7498(8) |
V (Å3) | 3679.72(16) |
Z | 4 |
T (K) | 180 |
λ(Å) | 0.71073 |
ρcalcd (g cm–3) | 3.602 |
μ(Mo Kα) (mm–1) | 23.458 |
R(Fo) for Fo2 > 2σ(Fo2) a | 0.0232 |
Rw(Fo2) b | 0.0572 |
Distances (Å) | |||
---|---|---|---|
Tb1–N2 (x4) | 2.455(6) | C1–N1 | 1.169(11) |
Tb1–O1 (x2) | 2.347(6) | C2–N2 | 1.153(8) |
Tb1–O2 (x2) | 2.389(7) | Au1–S1 | 2.318(3) |
S1–C1 | 1.669(9) | Au2–S2 | 2.2974(15) |
S2–C2 | 1.673(7) | Au1–Au2 | 3.1066(4) |
Assignment | λ (nm) |
---|---|
5D4 ⟶ 7F6 | 487,491 |
5D4 ⟶ 7F5 | 543,549 |
5D4 ⟶ 7F4 | 581,583,589 |
5D4 ⟶ 7F3 | 617,621 |
5D4 ⟶ 7F2 | 644,653 |
5D4 ⟶ 7F1 | 667,671 |
5D4 ⟶ 7F0 | 679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, J.D.; Sykora, R.E. Structural and Photoluminescent Properties of a Novel Terbium Bis(thiocyanato)aurate, Tb[Au(SCN)2]3·6H2O. Inorganics 2023, 11, 419. https://doi.org/10.3390/inorganics11110419
Taylor JD, Sykora RE. Structural and Photoluminescent Properties of a Novel Terbium Bis(thiocyanato)aurate, Tb[Au(SCN)2]3·6H2O. Inorganics. 2023; 11(11):419. https://doi.org/10.3390/inorganics11110419
Chicago/Turabian StyleTaylor, Jared D., and Richard E. Sykora. 2023. "Structural and Photoluminescent Properties of a Novel Terbium Bis(thiocyanato)aurate, Tb[Au(SCN)2]3·6H2O" Inorganics 11, no. 11: 419. https://doi.org/10.3390/inorganics11110419
APA StyleTaylor, J. D., & Sykora, R. E. (2023). Structural and Photoluminescent Properties of a Novel Terbium Bis(thiocyanato)aurate, Tb[Au(SCN)2]3·6H2O. Inorganics, 11(11), 419. https://doi.org/10.3390/inorganics11110419