Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis
Abstract
:1. Introduction
2. Mrp Proteins: A Universal Fe-S Cluster Biogenesis Factor
3. SufT Proteins: A Fe-S Cluster Delivery Factor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Posey, J.E.; Gherardini, F.C. Lack of a Role for Iron in the Lyme Disease Pathogen. Science 2000, 288, 1651–1653. [Google Scholar] [CrossRef] [PubMed]
- Beinert, H. Iron-Sulfur Proteins: Ancient Structures, Still Full of Surprises. J. Biol. Inorg. Chem. 2000, 5, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.C.; Dean, D.R.; Smith, A.D.; Johnson, M.K. Structure, Function, and Formation of Biological Iron-Sulfur Clusters. Annu. Rev. Biochem. 2005, 74, 247–281. [Google Scholar] [CrossRef] [PubMed]
- Andreini, C.; Rosato, A.; Banci, L. The Relationship between Environmental Dioxygen and Iron-Sulfur Proteins Explored at the Genome Level. PLoS ONE 2017, 12, e0171279. [Google Scholar] [CrossRef]
- Lénon, M.; Arias-Cartín, R.; Barras, F. The Fe-S Proteome of Escherichia coli: Prediction, Function, and Fate. Metallomics 2022, 14, mfac022. [Google Scholar] [CrossRef]
- Maio, N.; Lafont, B.A.P.; Sil, D.; Li, Y.; Bollinger, J.M.; Krebs, C.; Pierson, T.C.; Linehan, W.M.; Rouault, T.A. Fe-S Cofactors in the SARS-CoV-2 RNA-Dependent RNA Polymerase Are Potential Antiviral Targets. Science 2021, 373, 236–241. [Google Scholar] [CrossRef]
- Maio, N.; Raza, M.K.; Li, Y.; Zhang, D.-L.; Bollinger, J.M.; Krebs, C.; Rouault, T.A. An Iron-Sulfur Cluster in the Zinc-Binding Domain of the SARS-CoV-2 Helicase Modulates Its RNA-Binding and -Unwinding Activities. Proc. Natl. Acad. Sci. USA 2023, 120, e2303860120. [Google Scholar] [CrossRef]
- Fuss, J.O.; Tsai, C.-L.; Ishida, J.P.; Tainer, J.A. Emerging Critical Roles of Fe-S Clusters in DNA Replication and Repair. Biochim. Biophys. Acta 2015, 1853, 1253–1271. [Google Scholar] [CrossRef]
- Villalta, A.; Srour, B.; Lartigue, A.; Clémancey, M.; Byrne, D.; Chaspoul, F.; Loquet, A.; Guigliarelli, B.; Blondin, G.; Abergel, C.; et al. Evidence for [2Fe-2S]2+ and Linear [3Fe-4S]1+ Clusters in a Unique Family of Glycine/Cysteine-Rich Fe-S Proteins from Megavirinae Giant Viruses. J. Am. Chem. Soc. 2023, 145, 2733–2738. [Google Scholar] [CrossRef]
- Jacobson, M.R.; Cash, V.L.; Weiss, M.C.; Laird, N.F.; Newton, W.E.; Dean, D.R. Biochemical and Genetic Analysis of the nifUSVWZM Cluster from Azotobacter vinelandii. Mol. Gen. Genet. 1989, 219, 49–57. [Google Scholar] [CrossRef]
- Roche, B.; Aussel, L.; Ezraty, B.; Mandin, P.; Py, B.; Barras, F. Iron/Sulfur Proteins Biogenesis in Prokaryotes: Formation, Regulation and Diversity. Biochim. Biophys. Acta (BBA)-Bioenerg. 2013, 1827, 455–469. [Google Scholar] [CrossRef] [PubMed]
- Blahut, M.; Sanchez, E.; Fisher, C.E.; Outten, F.W. Fe-S Cluster Biogenesis by the Bacterial Suf Pathway. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118829. [Google Scholar] [CrossRef] [PubMed]
- Blanc, B.; Gerez, C.; Ollagnier de Choudens, S. Assembly of Fe/S Proteins in Bacterial Systems: Biochemistry of the Bacterial ISC System. Biochim. Biophys. Acta 2015, 1853, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Garcia, P.S.; D’Angelo, F.; Ollagnier de Choudens, S.; Dussouchaud, M.; Bouveret, E.; Gribaldo, S.; Barras, F. An Early Origin of Iron-Sulfur Cluster Biosynthesis Machineries before Earth Oxygenation. Nat. Ecol. Evol. 2022, 6, 1564–1572. [Google Scholar] [CrossRef]
- Ciofi-Baffoni, S.; Nasta, V.; Banci, L. Protein Networks in the Maturation of Human Iron-Sulfur Proteins. Metallomics 2018, 10, 49–72. [Google Scholar] [CrossRef]
- Mühlenhoff, U.; Braymer, J.J.; Christ, S.; Rietzschel, N.; Uzarska, M.A.; Weiler, B.D.; Lill, R. Glutaredoxins and Iron-Sulfur Protein Biogenesis at the Interface of Redox Biology and Iron Metabolism. Biol. Chem. 2020, 401, 1407–1428. [Google Scholar] [CrossRef]
- Braymer, J.J.; Freibert, S.A.; Rakwalska-Bange, M.; Lill, R. Mechanistic Concepts of Iron-Sulfur Protein Biogenesis in Biology. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118863. [Google Scholar] [CrossRef]
- Przybyla-Toscano, J.; Roland, M.; Gaymard, F.; Couturier, J.; Rouhier, N. Roles and Maturation of Iron-Sulfur Proteins in Plastids. J. Biol. Inorg. Chem. 2018, 23, 545–566. [Google Scholar] [CrossRef]
- Ali, V.; Shigeta, Y.; Tokumoto, U.; Takahashi, Y.; Nozaki, T. An Intestinal Parasitic Protist, Entamoeba Histolytica, Possesses a Non-Redundant Nitrogen Fixation-like System for Iron-Sulfur Cluster Assembly under Anaerobic Conditions. J. Biol. Chem. 2004, 279, 16863–16874. [Google Scholar] [CrossRef]
- Santos, H.J.; Nozaki, T. The Mitosome of the Anaerobic Parasitic Protist Entamoeba histolytica: A Peculiar and Minimalist Mitochondrion-Related Organelle. J. Eukaryot. Microbiol. 2022, 69, e12923. [Google Scholar] [CrossRef]
- Tsaousis, A.D.; Gentekaki, E.; Eme, L.; Gaston, D.; Roger, A.J. Evolution of the Cytosolic Iron-Sulfur Cluster Assembly Machinery in Blastocystis Species and Other Microbial Eukaryotes. Eukaryot. Cell 2014, 13, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Maio, N.; Rouault, T.A. Outlining the Complex Pathway of Mammalian Fe-S Cluster Biogenesis. Trends Biochem. Sci. 2020, 45, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Sagan, L. On the Origin of Mitosing Cells. J. Theor. Biol. 1967, 14, 225-IN6. [Google Scholar] [CrossRef]
- López-García, P.; Eme, L.; Moreira, D. Symbiosis in Eukaryotic Evolution. J. Theor. Biol. 2017, 434, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Freibert, S.-A.; Goldberg, A.V.; Hacker, C.; Molik, S.; Dean, P.; Williams, T.A.; Nakjang, S.; Long, S.; Sendra, K.; Bill, E.; et al. Evolutionary Conservation and in Vitro Reconstitution of Microsporidian Iron-Sulfur Cluster Biosynthesis. Nat. Commun. 2017, 8, 13932. [Google Scholar] [CrossRef]
- Gérard, E.; Labedan, B.; Forterre, P. Isolation of a minD-like Gene in the Hyperthermophilic Archaeon Pyrococcus AL585, and Phylogenetic Characterization of Related Proteins in the Three Domains of Life. Gene 1998, 222, 99–106. [Google Scholar] [CrossRef]
- Leipe, D.D.; Wolf, Y.I.; Koonin, E.V.; Aravind, L. Classification and Evolution of P-Loop GTPases and Related ATPases. J. Mol. Biol. 2002, 317, 41–72. [Google Scholar] [CrossRef]
- Dardel, F.; Panvert, M.; Blanquet, S.; Fayat, G. Locations of the metG and mrp Genes on the Physical Map of Escherichia coli. J. Bacteriol. 1991, 173, 3273. [Google Scholar] [CrossRef]
- Petersen, L.; Downs, D.M. Mutations in apbC (Mrp) Prevent Function of the Alternative Pyrimidine Biosynthetic Pathway in Salmonella typhimurium. J. Bacteriol. 1996, 178, 5676–5682. [Google Scholar] [CrossRef]
- Skovran, E.; Downs, D.M. Lack of the ApbC or ApbE Protein Results in a Defect in Fe-S Cluster Metabolism in Salmonella enterica Serovar Typhimurium. J. Bacteriol. 2003, 185, 98–106. [Google Scholar] [CrossRef]
- Boyd, J.M.; Lewis, J.A.; Escalante-Semerena, J.C.; Downs, D.M. Salmonella enterica Requires ApbC Function for Growth on Tricarballylate: Evidence of Functional Redundancy between ApbC and IscU. J. Bacteriol. 2008, 190, 4596–4602. [Google Scholar] [CrossRef] [PubMed]
- Burschel, S.; Kreuzer Decovic, D.; Nuber, F.; Stiller, M.; Hofmann, M.; Zupok, A.; Siemiatkowska, B.; Gorka, M.; Leimkühler, S.; Friedrich, T. Iron-Sulfur Cluster Carrier Proteins Involved in the Assembly of Escherichia coli NADH:Ubiquinone Oxidoreductase (Complex I). Mol. Microbiol. 2019, 111, 31–45. [Google Scholar] [CrossRef] [PubMed]
- High, N.J.; Deadman, M.E.; Hood, D.W.; Moxon, E.R. The Identification a Novel Gene Required for Lipopolysaccharide Biosynthesis by Haemophilus Influenzae RM7004, Using Transposon Tn916 Mutagenesis. FEMS Microbiol. Lett. 1996, 145, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Solodovnikova, N.; Nicholson, T.; Antholine, W.; Walden, W.E. A Novel Eukaryotic Factor for Cytosolic Fe-S Cluster Assembly. EMBO J. 2003, 22, 4826–4835. [Google Scholar] [CrossRef]
- Hausmann, A.; Aguilar Netz, D.J.; Balk, J.; Pierik, A.J.; Mühlenhoff, U.; Lill, R. The Eukaryotic P Loop NTPase Nbp35: An Essential Component of the Cytosolic and Nuclear Iron-Sulfur Protein Assembly Machinery. Proc. Natl. Acad. Sci. USA 2005, 102, 3266–3271. [Google Scholar] [CrossRef]
- Boyd, J.M.; Pierik, A.J.; Netz, D.J.A.; Lill, R.; Downs, D.M. Bacterial ApbC Can Bind and Effectively Transfer Iron-Sulfur Clusters. Biochemistry 2008, 47, 8195–8202. [Google Scholar] [CrossRef]
- Pardoux, R.; Fiévet, A.; Carreira, C.; Brochier-Armanet, C.; Valette, O.; Dermoun, Z.; Py, B.; Dolla, A.; Pauleta, S.R.; Aubert, C. The Bacterial MrpORP Is a Novel Mrp/NBP35 Protein Involved in Iron-Sulfur Biogenesis. Sci. Rep. 2019, 9, 712. [Google Scholar] [CrossRef]
- Benoit, S.L.; Agudelo, S.; Maier, R.J. A Two-Hybrid System Reveals Previously Uncharacterized Protein-Protein Interactions within the Helicobacter pylori NIF Iron-Sulfur Maturation System. Sci. Rep. 2021, 11, 10794. [Google Scholar] [CrossRef]
- Stehling, O.; Jeoung, J.-H.; Freibert, S.A.; Paul, V.D.; Bänfer, S.; Niggemeyer, B.; Rösser, R.; Dobbek, H.; Lill, R. Function and Crystal Structure of the Dimeric P-Loop ATPase CFD1 Coordinating an Exposed [4Fe-4S] Cluster for Transfer to Apoproteins. Proc. Natl. Acad. Sci. USA 2018, 115, E9085–E9094. [Google Scholar] [CrossRef]
- Bange, G.; Sinning, I. SIMIBI Twins in Protein Targeting and Localization. Nat. Struct. Mol. Biol. 2013, 20, 776–780. [Google Scholar] [CrossRef]
- Boyd, J.M.; Sondelski, J.L.; Downs, D.M. Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function. J. Biol. Chem. 2009, 284, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Fabre, E.; Hurt, E.C. NBP35 Encodes an Essential and Evolutionary Conserved Protein in Saccharomyces cerevisiae with Homology to a Superfamily of Bacterial ATPases. Gene 1996, 178, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Netz, D.J.A.; Pierik, A.J.; Stümpfig, M.; Bill, E.; Sharma, A.K.; Pallesen, L.J.; Walden, W.E.; Lill, R. A Bridging [4Fe-4S] Cluster and Nucleotide Binding Are Essential for Function of the Cfd1-Nbp35 Complex as a Scaffold in Iron-Sulfur Protein Maturation. J. Biol. Chem. 2012, 287, 12365–12378. [Google Scholar] [CrossRef] [PubMed]
- Camire, E.J.; Grossman, J.D.; Thole, G.J.; Fleischman, N.M.; Perlstein, D.L. The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase. J. Biol. Chem. 2015, 290, 23793–23802. [Google Scholar] [CrossRef] [PubMed]
- Grossman, J.D.; Camire, E.J.; Perlstein, D.L. Approaches to Interrogate the Role of Nucleotide Hydrolysis by Metal Trafficking NTPases: The Nbp35-Cfd1 Iron-Sulfur Cluster Scaffold as a Case Study. Methods Enzymol. 2018, 599, 293–325. [Google Scholar] [CrossRef]
- Grossman, J.D.; Gay, K.A.; Camire, E.J.; Walden, W.E.; Perlstein, D.L. Coupling Nucleotide Binding and Hydrolysis to Iron-Sulfur Cluster Acquisition and Transfer Revealed through Genetic Dissection of the Nbp35 ATPase Site. Biochemistry 2019, 58, 2017–2027. [Google Scholar] [CrossRef]
- Outten, F.W.; Djaman, O.; Storz, G. A suf Operon Requirement for Fe-S Cluster Assembly during Iron Starvation in Escherichia coli. Mol. Microbiol. 2004, 52, 861–872. [Google Scholar] [CrossRef]
- Takahashi, Y.; Tokumoto, U. A Third Bacterial System for the Assembly of Iron-Sulfur Clusters with Homologs in Archaea and Plastids. J. Biol. Chem. 2002, 277, 28380–28383. [Google Scholar] [CrossRef]
- Butland, G.; Babu, M.; Díaz-Mejía, J.J.; Bohdana, F.; Phanse, S.; Gold, B.; Yang, W.; Li, J.; Gagarinova, A.G.; Pogoutse, O.; et al. eSGA: E. coli Synthetic Genetic Array Analysis. Nat. Methods 2008, 5, 789–795. [Google Scholar] [CrossRef]
- Bych, K.; Kerscher, S.; Netz, D.J.A.; Pierik, A.J.; Zwicker, K.; Huynen, M.A.; Lill, R.; Brandt, U.; Balk, J. The Iron-Sulphur Protein Ind1 Is Required for Effective Complex I Assembly. EMBO J. 2008, 27, 1736–1746. [Google Scholar] [CrossRef]
- Schwenkert, S.; Netz, D.J.A.; Frazzon, J.; Pierik, A.J.; Bill, E.; Gross, J.; Lill, R.; Meurer, J. Chloroplast HCF101 Is a Scaffold Protein for [4Fe-4S] Cluster Assembly. Biochem. J. 2009, 425, 207–214. [Google Scholar] [CrossRef]
- Lezhneva, L.; Amann, K.; Meurer, J. The Universally Conserved HCF101 Protein Is Involved in Assembly of [4Fe-4S]-Cluster-Containing Complexes in Arabidopsis thaliana Chloroplasts. Plant J. 2004, 37, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Sheftel, A.D.; Stehling, O.; Pierik, A.J.; Netz, D.J.A.; Kerscher, S.; Elsässer, H.-P.; Wittig, I.; Balk, J.; Brandt, U.; Lill, R. Human Ind1, an Iron-Sulfur Cluster Assembly Factor for Respiratory Complex I. Mol. Cell. Biol. 2009, 29, 6059–6073. [Google Scholar] [CrossRef] [PubMed]
- Stöckel, J.; Oelmüller, R. A Novel Protein for Photosystem I Biogenesis. J. Biol. Chem. 2004, 279, 10243–10251. [Google Scholar] [CrossRef]
- Camponeschi, F.; Prusty, N.R.; Heider, S.A.E.; Ciofi-Baffoni, S.; Banci, L. GLRX3 Acts as a [2Fe-2S] Cluster Chaperone in the Cytosolic Iron-Sulfur Assembly Machinery Transferring [2Fe-2S] Clusters to NUBP1. J. Am. Chem. Soc. 2020, 142, 10794–10805. [Google Scholar] [CrossRef] [PubMed]
- Bargagna, B.; Matteucci, S.; Ciofi-Baffoni, S.; Camponeschi, F.; Banci, L. Unraveling the Mechanism of [4Fe-4S] Cluster Assembly on the N-Terminal Cluster Binding Site of NUBP1. Protein Sci. 2023, 32, e4625. [Google Scholar] [CrossRef]
- Pyrih, J.; Žárský, V.; Fellows, J.D.; Grosche, C.; Wloga, D.; Striepen, B.; Maier, U.G.; Tachezy, J. The Iron-Sulfur Scaffold Protein HCF101 Unveils the Complexity of Organellar Evolution in SAR, Haptista and Cryptista. BMC Ecol. Evol. 2021, 21, 46. [Google Scholar] [CrossRef]
- Zhao, C.; Lyu, Z.; Long, F.; Akinyemi, T.; Manakongtreecheep, K.; Söll, D.; Whitman, W.B.; Vinyard, D.J.; Liu, Y. The Nbp35/ApbC Homolog Acts as a Nonessential [4Fe-4S] Transfer Protein in Methanogenic Archaea. FEBS Lett. 2020, 594, 924–932. [Google Scholar] [CrossRef]
- Boyd, J.M.; Drevland, R.M.; Downs, D.M.; Graham, D.E. Archaeal ApbC/Nbp35 Homologs Function as Iron-Sulfur Cluster Carrier Proteins. J. Bacteriol. 2009, 191, 1490–1497. [Google Scholar] [CrossRef]
- Mashruwala, A.A.; Roberts, C.A.; Bhatt, S.; May, K.L.; Carroll, R.K.; Shaw, L.N.; Boyd, J.M. Staphylococcus aureus SufT: An Essential Iron-Sulphur Cluster Assembly Factor in Cells Experiencing a High-Demand for Lipoic Acid. Mol. Microbiol. 2016, 102, 1099–1119. [Google Scholar] [CrossRef]
- Mashruwala, A.A.; Bhatt, S.; Poudel, S.; Boyd, E.S.; Boyd, J.M. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. PLoS Genet. 2016, 12, e1006233. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Anand, K.; Das, M.; O’Niel, R.A.; Sabarinath, P.S.; Thakur, C.; Raghunatha Reddy, R.L.; Rajmani, R.S.; Chandra, N.; Laxman, S.; et al. Mycobacterium tuberculosis Requires SufT for Fe-S Cluster Maturation, Metabolism, and Survival in Vivo. PLoS Pathog. 2022, 18, e1010475. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Minamisawa, K.; Mitsui, H. A Sinorhizobium meliloti RpoH-Regulated Gene Is Involved in Iron-Sulfur Protein Metabolism and Effective Plant Symbiosis under Intrinsic Iron Limitation. J. Bacteriol. 2016, 198, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Mashruwala, A.A.; Boyd, J.M. Investigating the Role(s) of SufT and the Domain of Unknown Function 59 (DUF59) in the Maturation of Iron-Sulfur Proteins. Curr. Genet. 2017, 64, 9–16. [Google Scholar] [CrossRef]
- Huet, G.; Castaing, J.-P.; Fournier, D.; Daffé, M.; Saves, I. Protein Splicing of SufB Is Crucial for the Functionality of the Mycobacterium tuberculosis SUF Machinery. J. Bacteriol. 2006, 188, 3412–3414. [Google Scholar] [CrossRef]
- McKenzie, R.M.E.; Henry, L.G.; Boutrin, M.-C.; Ximinies, A.; Fletcher, H.M. Role of the Porphyromonas gingivalis Iron-Binding Protein PG1777 in Oxidative Stress Resistance. Microbiology 2016, 162, 256–267. [Google Scholar] [CrossRef]
- Kassube, S.A.; Thomä, N.H. Structural Insights into Fe-S Protein Biogenesis by the CIA Targeting Complex. Nat. Struct. Mol. Biol. 2020, 27, 735–742. [Google Scholar] [CrossRef]
- Tamuhla, T.; Joubert, L.; Willemse, D.; Williams, M.J. SufT Is Required for Growth of Mycobacterium smegmatis under Iron Limiting Conditions. Microbiology 2020, 166, 296–305. [Google Scholar] [CrossRef]
- Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes Required for Mycobacterial Growth Defined by High Density Mutagenesis. Mol. Microbiol. 2003, 48, 77–84. [Google Scholar] [CrossRef]
- Griffin, J.E.; Gawronski, J.D.; Dejesus, M.A.; Ioerger, T.R.; Akerley, B.J.; Sassetti, C.M. High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism. PLoS Pathog. 2011, 7, e1002251. [Google Scholar] [CrossRef]
- Ferrández, A.; Miñambres, B.; García, B.; Olivera, E.R.; Luengo, J.M.; García, J.L.; Díaz, E. Catabolism of Phenylacetic Acid in Escherichia coli. Characterization of a New Aerobic Hybrid Pathway. J. Biol. Chem. 1998, 273, 25974–25986. [Google Scholar] [CrossRef] [PubMed]
- Olivera, E.R.; Miñambres, B.; García, B.; Muñiz, C.; Moreno, M.A.; Ferrández, A.; Díaz, E.; García, J.L.; Luengo, J.M. Molecular Characterization of the Phenylacetic Acid Catabolic Pathway in Pseudomonas putida U: The Phenylacetyl-CoA Catabolon. Proc. Natl. Acad. Sci. USA 1998, 95, 6419–6424. [Google Scholar] [CrossRef] [PubMed]
- Stehling, O.; Mascarenhas, J.; Vashisht, A.A.; Sheftel, A.D.; Niggemeyer, B.; Rösser, R.; Pierik, A.J.; Wohlschlegel, J.A.; Lill, R. Human CIA2A-FAM96A and CIA2B-FAM96B Integrate Iron Homeostasis and Maturation of Different Subsets of Cytosolic-Nuclear Iron-Sulfur Proteins. Cell Metab. 2013, 18, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Bernard, D.G.; Balk, J.; Hai, H.; Cui, X. The DUF59 Family Gene AE7 Acts in the Cytosolic Iron-Sulfur Cluster Assembly Pathway to Maintain Nuclear Genome Integrity in Arabidopsis. Plant Cell 2012, 24, 4135–4148. [Google Scholar] [CrossRef] [PubMed]
- Stehling, O.; Vashisht, A.A.; Mascarenhas, J.; Jonsson, Z.O.; Sharma, T.; Netz, D.J.A.; Pierik, A.J.; Wohlschlegel, J.A.; Lill, R. MMS19 Assembles Iron-Sulfur Proteins Required for DNA Metabolism and Genomic Integrity. Science 2012, 337, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Gari, K.; León Ortiz, A.M.; Borel, V.; Flynn, H.; Skehel, J.M.; Boulton, S.J. MMS19 Links Cytoplasmic Iron-Sulfur Cluster Assembly to DNA Metabolism. Science 2012, 337, 243–245. [Google Scholar] [CrossRef]
- Maione, V.; Cantini, F.; Severi, M.; Banci, L. Investigating the Role of the Human CIA2A-CIAO1 Complex in the Maturation of Aconitase. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1980–1987. [Google Scholar] [CrossRef]
- Maione, V.; Grifagni, D.; Torricella, F.; Cantini, F.; Banci, L. CIAO3 Protein Forms a Stable Ternary Complex with Two Key Players of the Human Cytosolic Iron-Sulfur Cluster Assembly Machinery. J. Biol. Inorg. Chem. 2020, 25, 501–508. [Google Scholar] [CrossRef]
- Upadhyay, A.S.; Stehling, O.; Panayiotou, C.; Rösser, R.; Lill, R.; Överby, A.K. Cellular Requirements for Iron-Sulfur Cluster Insertion into the Antiviral Radical SAM Protein Viperin. J. Biol. Chem. 2017, 292, 13879–13889. [Google Scholar] [CrossRef]
- Weerapana, E.; Wang, C.; Simon, G.M.; Richter, F.; Khare, S.; Dillon, M.B.D.; Bachovchin, D.A.; Mowen, K.; Baker, D.; Cravatt, B.F. Quantitative Reactivity Profiling Predicts Functional Cysteines in Proteomes. Nature 2010, 468, 790–795. [Google Scholar] [CrossRef]
- Almeida, M.S.; Herrmann, T.; Peti, W.; Wilson, I.A.; Wüthrich, K. NMR Structure of the Conserved Hypothetical Protein TM0487 from Thermotoga maritima: Implications for 216 Homologous DUF59 Proteins. Protein Sci. 2005, 14, 2880–2886. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, B.; Wang, L.; Wan, S.; Luo, Y.; Wang, L.; Lin, J.; Xia, B. Solution Structure of Monomeric Human FAM96A. J. Biomol. NMR 2013, 56, 387–392. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aubert, C.; Mandin, P.; Py, B. Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis. Inorganics 2023, 11, 431. https://doi.org/10.3390/inorganics11110431
Aubert C, Mandin P, Py B. Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis. Inorganics. 2023; 11(11):431. https://doi.org/10.3390/inorganics11110431
Chicago/Turabian StyleAubert, Corinne, Pierre Mandin, and Béatrice Py. 2023. "Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis" Inorganics 11, no. 11: 431. https://doi.org/10.3390/inorganics11110431
APA StyleAubert, C., Mandin, P., & Py, B. (2023). Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis. Inorganics, 11(11), 431. https://doi.org/10.3390/inorganics11110431