Coordination Chemistry of Polynitriles, Part XII—Serendipitous Synthesis of the Octacyanofulvalenediide Dianion and Study of Its Coordination Chemistry with K+ and Ag+
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.1.1. Reaction of Diazotetracyanocyclopentadiene with Chloride and Bromide
2.1.2. Synthesis of K2[C10(CN)8] (6)
2.1.3. Reaction of Diazotetracyanocyclopentadiene with [Ru(C5H5)Cl(PPh3)2]
2.2. Cyclovoltammetry
2.3. EPR Spectroscopy
2.4. Crystallography
2.4.1. Molecular and Crystal Structure of Compound 1
2.4.2. Crystal and Molecular Structure of Compound 4, Toluene Solvate
2.4.3. Crystal and Molecular Structure of Compound 5
2.4.4. Crystal and Molecular Structure of [K(H2O)]2[C10(CN)8], 6a
3. Discussion
4. Materials and Methods
4.1. Starting Materials and Instrumentation
4.2. Reaction of 1 with Cu and NEt4Cl in MeCN
4.3. Reaction of 1 with NEt4Br in MeCN
4.4. Reaction of the Crude Product from Section 4.2 with AgNO3 in Acetone–Water
4.5. Reaction of 1 with Catalytic Amounts of [Ru(C5H5)Cl(PPh3)2] and NEt4Br
4.6. Reaction of 4 with KCl in MeOH
4.7. Crystal Structure Determinations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webster, O.W. Diazotetracyanocyclopentadiene. J. Amer. Chem. Soc. 1966, 88, 4055–4061. [Google Scholar] [CrossRef]
- Galli, C. Radical Reactions of Arenediazonium Ions: An Easy Entry into the Chemistry of the Aryl Radical. Chem. Rev. 1988, 88, 765–792. [Google Scholar] [CrossRef]
- Mo, F.; Qiu, D.; Zhang, L.; Wang, J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem. Rev. 2021, 121, 5741–5829. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, G.; Bonomo, M.; Antenucci, A.; Damin, A.; Dughera, S. Ullmann homocoupling of arenediazonium salts in a deep eutectic solvent. Synthetic and machanistic aspects. RSC Adv. 2022, 12, 26640–26647. [Google Scholar] [CrossRef] [PubMed]
- Shkrob, I.A.; Marin, T.W.; Wishart, J.F. Ionic Liquids Based on Polynitrile Anions: Hydrophobicity, Low Proton Affinity, and High Radiolytic Resistance Combined. J. Phys. Chem. 2013, 117, 7084–7094. [Google Scholar] [CrossRef] [PubMed]
- Child, B.Z.; Giri, S.; Gronert, S.; Jena, P. Aromatic Superhalogens. Chem. Eur. J. 2014, 20, 4736–4745. [Google Scholar] [CrossRef]
- Zhong, M.; Zhou, J.; Jena, P. Rational Design of stable Dianions by Functionalizing Polycyclic Aromatic Hydrocarbons. ChemPhysChem 2017, 18, 1937–1942. [Google Scholar] [CrossRef]
- Nimax, P.R.; Zoller, F.; Blockhaus, T.; Küblböck, T.; Fattakhova-Rohlfing, D.; Sünkel, K. An aminotetracyanocyclopentadienide system: Light-induced formation of a thermally stable cyclopentadienyl radical. New J. Chem. 2020, 44, 72–78. [Google Scholar] [CrossRef]
- Nimax, P.R.; Rotthowe, N.; Zoller, F.; Blockhaus, T.; Wagner, F.; Fattakhova, D.; Sünkel, K. Coordination polymers of 5-substituted 1,2,3,4-tetracyanocyclopentadienides: Structural and electrochemical properties of complex compounds of 5-amino- and 5-nitro-tetracyanocyclopentadienide. Dalton Trans. 2021, 50, 17643–17652. [Google Scholar] [CrossRef]
- Less, R.J.; Wilson, T.C.; McPartlin, M.; Wood, P.T.; Wright, D.S. Transition metal complexes of the pentacyanocyclopentadienide anion. Chem. Commun. 2011, 47, 10007–10009. [Google Scholar] [CrossRef]
- Zhao, H.; Heintz, R.A.; Dunbar, K.R. Unprecedented Two-Dimensional Polymers of Mn(II) with TCNQ–∙ (TCNQ = 7,7,8,8,-Tetracyanoquinodimethane. J. Am. Chem. Soc. 1996, 118, 12844–12845. [Google Scholar] [CrossRef]
- Milasinovic, V.; Krawczuk, A.; Molcanov, K.; Kojic-Prodic, B. Two-Electron Multicenter Bonding (‚Pancake Bonding‘) in Dimers of 5,6-Dichloro-2,3-dicyanosemiquinone (DDQ) Radical Anions. Cryst. Growth Des. 2020, 20, 5435–5443. [Google Scholar] [CrossRef]
- Preuss, K.E. Pancake bonds: π-Stacked dimers of organic and light-atom radicals. Polyhedron 2014, 79, 1–15. [Google Scholar] [CrossRef]
- Dunkin, I.R.; McCluskey, A. Tetrabromocyclopentadienylidene: Generation and reaction with CO in low temperature matrices. Spectrochim. Acta 1993, 49A, 1179–1185. [Google Scholar] [CrossRef]
- Olson, D.R.; Platz, M.S. The reaction of cyclopentadienylidene, fluorenylidene and tetrachlorocyclopentadienylidene with alcohols. A laser flash photolysis study. J. Phys. Org. Chem. 1996, 9, 759–769. [Google Scholar] [CrossRef]
- Henkel, S.; Trosien, I.; Mieres-Perez, J.; Lohmiller, T.; Savitsky, A.; Sanchez-Garcia, E.; Sander, W. Reactions of Cyclopentadienylidenes with CF3I: Electron Bond Donation versus Halogen Bond Donation of the Iodine Atom. J. Org. Chem. 2018, 83, 7586–7592. [Google Scholar] [CrossRef]
- Abel, E.W.; Pring, G.M. The Preparation of Perhalogenopentafulvalenes utilising a Palladium Catalyst. Inorg. Chim. Acta 1980, 44, L161–L163. [Google Scholar] [CrossRef]
- Schramm, K.D.; Ibers, J.A. Synthesis and Characterization of Some -Bonded Diazo Complexes of Nickel(0), Platinum(0), and Ruthenium(0): Molecular Structure of Ru(CO)2(N2C5C14)(P(C6H5)3)2-CH2C12. Inorg. Chem. 1980, 19, 2441–2448. [Google Scholar] [CrossRef]
- Grieve, D.M.A.; Lewis, G.E.; Ravenscroft, M.D.; Skrabal, P.; Sonoda, T.; Szele, I.; Zollinger, H. Reactivity of Carbenes and Related Compounds towards Molecular Nitrogen. Helv. Chim. Acta 1985, 68, 1427–1439. [Google Scholar] [CrossRef]
- Aquad, E.; Leriche, P.; Mabon, G.; Gorgues, A.; Khodorkovsky, V. Fulvalene derivatives: Strong proaromatic electron acceptors. Tetrahedron Lett. 2001, 42, 2813–2815. [Google Scholar] [CrossRef]
- Aquad, E.; Leriche, P.; Mabon, G.; Gorgues, A.; Allain, M.; Riou, A.; Ellern, A.; Khodorkovsky, V. Base-catalyzed condensation of cyclopentadiene derivatives. Synthesis of fulvalene analogues: Strong proaromatic electron acceptors. Tetrahedron 2003, 59, 5773–5782. [Google Scholar] [CrossRef]
- Nimax, P.; Sünkel, K. Structural diversity in the alkaline earth metal compounds of tetra and pentacyanocyclopentadienide. Dalton Trans. 2018, 47, 409–417. [Google Scholar] [CrossRef]
- Ramm, M.; Schulz, B.; Thurner, J.-U.; Tomaschewski, G. Crystal and Molecular Structure of 1-Diazo-2,3,4,5-tetraphenylcyclopentadiene. Cryst. Res. Technol. 1990, 25, 405–410. [Google Scholar] [CrossRef]
- Najafian, K.; von Rague Schleyer, P.; Tidwell, T.T. Aromaticity and antiaromaticity in fulvenes, ketocyclopolyenes, fulvenones, and diazocyclopolyenes. Org. Biomol. Chem. 2003, 1, 3410–3417. [Google Scholar] [CrossRef] [PubMed]
- Duthaler, R.O.; Förster, H.G.; Roberts, J.D. 15N and 13C Nuclear Magnetic Resonance Spectra of Diazo and Diazonium Compounds. J. Amer. Chem. Soc. 1978, 100, 4974–4979. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer, a program for Hirshfeld Surface Analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Cohen, T.; Lewarchik, R.J.; Tarino, J.Z. Role of Radical and Organocopper Intermediates in Aromatic Diazonium Decomposition induced by Cuprous Ion. J. Am. Chem. Soc. 1974, 96, 7753–7760. [Google Scholar] [CrossRef]
- Cepanec, I.; Litvic, M.; Udikovic, J.; Pogorelic, I.; Lovric, M. Copper(I)-catalysed homo-coupling of aryldiazonium salts: Synthesis of symmetric biaryls. Tetrahedron 2007, 63, 5614–5621. [Google Scholar] [CrossRef]
- Albertin, G.; Antoniutti, S.; Bortoluzzi, M.; Botter, A.; Castro, J. Pentamethylcyclopentadienyl Half-Sandwich Diazoalkane Complexes of Ruthenium: Preparation and Reactivity. Inorg. Chem. 2016, 55, 5592–5602. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Nimax, P.R.; Reimann, D.; Sünkel, K. Solvent effects on the crystal structure of silverpentacyanocyclopentadienide: Supramolecular isomerism and solvent coordination. Dalton Trans. 2018, 47, 8476–8482. [Google Scholar] [CrossRef] [PubMed]
- Less, R.J.; Wilson, T.C.; Guan, B.; McPartlin, M.; Steiner, A.; Wood, P.T.; Wright, D.S. Solvent Direction of Molecular Architectures in Group 1 Metal Pentacyanocyclopentadienides. Eur. J. Inorg. Chem. 2013, 2013, 1161–1169. [Google Scholar] [CrossRef]
- Batten, S.R.; Hoskins, B.F.; Robson, R. Structures of [Ag(tcm)], [Ag(tcm)(phz)1/2] and [Ag(tcm)(pyz)] (tcm = tricyanmethanide, C(CN)3−, phz = phenazine, pyz = pyrazine). New J. Chem. 1998, 22, 173–175. [Google Scholar] [CrossRef]
- Witt, J.R.; Britton, D. The crystal structure of potassium tricyanomethanide KC(CN)3. Acta Cryst. 1971, B27, 1835–1837. [Google Scholar] [CrossRef]
- Farrugia, L.J. WINGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-integrated space group and crystal structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON squeeze: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 9–18. [Google Scholar] [CrossRef] [Green Version]
Bond | Length [Å]/Angle [°] | Bond | Length [Å]/Angle [°] |
---|---|---|---|
N1–N2 | 1.1017(13) | C1–N1 | 1.3565(13) |
C1–C2 | 1.4202(14) | C2–C3 | 1.3919(14) |
C3–C4 | 1.4164(14) | C4–C5 | 1.3937(14) |
C5–C1 | 1.4212(14) | ||
Ccp–CCN | 1.4225(15)–1.4252(15) | CCN–NCN | 1.1475(15)–1.1502(15) |
C1–N1–N2 | 179.7(1) | Ccp–C–N | 174.3(1)–175.4 1 |
Bond | Length [Å]/Angle[°] | Bond | Length [Å]/Angle [°] |
---|---|---|---|
Ag1–N1 | 2.248(4) | Ag1–N2_iii | 2.246(4) |
Ag1–N3_ii | 2.301(5) | Ag1–N4_i | 2.309(5) |
(C–C)cp | 1.399(6)–1.417(6) | Ccp–CCN | 1.412(6)–1.424(6) |
(C–N) | 1.134(7)–1.147(7) | C4–C4_ii | 1.462(8) |
C1–C6–N1 | 178.6(5) | C2–C7–N2 | 177.9(5) |
C3–C8–N3 | 177.1(6) | C5–C9–N4 | 177.1(6) |
Ag1–N1–C6 | 169.2(4) | Ag1–N2–C7 | 168.7(4) |
Ag1–N3–C8 | 164.1(5) | Ag1–N5–C9 | 164.2(5) |
C3–C4–C4_ii–C3_ii | −126.1(5) |
Bond | Length [Å]/Angle [°] | |
---|---|---|
Molecule A | Molecule B | |
(C–C)cp | 1.399(3)–1.418(3) | 1.397(3)–1.428(3) |
(C–N) | 1.145(3)–1.152(3) | 1.143(3)–1.151(3) |
Ccp–CCN | 1.418(3)–1.428(3) | 1.417(3)–1.429(3) |
Cn01–Cn01i | 1.467(4) | 1.472(4) |
Cn02–Cn06–Nn01 | 178.3(3) | 179.5(3) |
Cn03–Cn07–Nn02 | 176.4(3) | 177.7(3) |
Cn04–Cn08–Nn03 | 176.8(3) | 177.5(3) |
Cn05–Cn09–Nn04 | 178.8(3) | 179.2(3) |
Cn02–Cn01–Cn01i–Cn02i | −125.9(3) | −54.9(3) |
Bond | Length [Å]/Angle[°] | Bond | Length [Å]/Angle [°] |
---|---|---|---|
K1–N1/K1–N1i | 2.839(2) | K1–N2iv/K1–N2vi | 2.870(2) |
K1–O1 | 2.874(2) | K1–N1ii/K1–N1iii | 2.915(2) |
K1–K1iii | 3.9929(6) | ||
(C–C)cp | 1.400(4)–1.418(3) | Ccp–CCN | 1.418(3)–1.426(3) |
(C–N) | 1.146(3)–1.147(3) | C1–C1xi | 1.477(6) |
C2–C7–N1 | 175.3(2) | C3–C8–N2 | 176.8(3) |
K1–N1–C7 | 132.3(2) | K1–N1ii–C7ii | 131.6(2) |
K1–N2–C8 | 150.0(2) | ||
C2–C1–C1xi–C2xi | −140.3(2) |
Compound | 1 | 4-LT | 4-RT | 5 | 6 |
---|---|---|---|---|---|
Empirical formula | C9N6 | C16H8AgN4 | C16H8AgN4 | C34H40N10 | C9H2KN4O |
Formula weight | 192.15 | 364.13 | 364.13 | 588.76 | 221.25 |
Temperature [K] | 100(2) | 100(2) | 297(2) | 100(2) | 110(2) |
Crystal system | Orthorhombic | Monoclinic | Monoclinic | Orthorhombic | Orthorhombic |
Space group | P bca | C 2/c | C 2/c | P bcn | C cca |
Unit cell dimensions | |||||
a [Å] | 12.5735(4) | 26.679(1) | 26.715(3) | 17.8082(6) | 7.4600(7) |
b | 9.8840(3) | 7.3110(4) | 7.4955(7) | 17.7182(6) | 20.3621(19) |
c | 13.6977(4) | 20.031(1) | 19.993(2) | 22.0972(7) | 13.2449(12) |
ß [°] | 131.793(1). | 131.929(3) | |||
Volume [Å3] | 1702.30(9) | 2912.9(3) | 2978.5(5) | 6972.3(4) | 2011.9(3) |
Z | 8 | 8 | 8 | 8 | 8 |
ρcalc [g cm−3] | 1.499 | 1.661 | 1.624 | 1.122 | 1.461 |
µ [mm−1] | 0.104 | 1.381 | 1.350 | 0.070 | 0.503 |
F(000) | 768 | 1432 | 1432 | 2512 | 888 |
Crystal size [mm3] | 0.060 × 0.050 × 0.040 | 0.090 × 0.060 × 0.020 | 0.090 × 0.060 × 0.020 | 0.100 × 0.080 × 0.050 | 0.100 × 0.030 × 0.010 |
Θ range | 3.240–28.273° | 2.046–28.303° | 2.049–30.494° | 2.287–26.387° | 3.290–26.372° |
Index ranges | −16 ≤ h ≤ 15, −11 ≤ k ≤ 13, −18 ≤ l ≤ 18 | −35 ≤ h ≤ 26, 0 ≤ k ≤ 9, 0 ≤ l ≤ 26 | −38 ≤ h ≤ 28, 0 ≤ k ≤ 10, 0 ≤ l ≤ 28 | −22 ≤ h ≤ 21, −21 ≤ k ≤ 22, −27 ≤ l ≤ 27 | −8 ≤ h ≤ 9, −25 ≤ k ≤ 20, −16 ≤ l ≤ 16 |
Refl. coll. | 18615 | 3608 | 6594 | 68882 | 8675 |
Indep. Refl. [Rint] | 2108 [0.0452] | 3608 [0.0440] | 6594 [0.0347] | 7143 [0.0708] | 1036 [0.0617] |
Absorpt. correction | Semi-empirical from equivalents | ||||
Tmax/Tmin | 0.7457/0.6852 | 0.7457/0.6621 | 0.6478/0.5642 | 0.9705/0.8778 | 0.9281/0.7917 |
Data/restr./param. | 2108/0/136 | 3608/7/148 | 6594/7/148 | 7142/0/405 | 1036/0/70 |
GOOF | 1.027 | 1.108 | 1.046 | 1.144 | 1.070 |
R1/wR2 [I>2σ (I)] | 0.0365/0.1077 | 0.0445/0.1173 | 0.0580/0.1590 | 0.0626/0.1401 | 0.0413/0.0886 |
R1/wR2 (all data) | 0.0494/0.1215 | 0.0508/0.1221 | 0.0742/0.1709 | 0.0933/0.1537 | 0.0563/0.0942 |
Δρel [e Å−3] | 0.351/−0.225 | 1.571/−0.904 | 2.171/−1.112 | 0.243/−0.216 | 0.307/−0.291 |
CCDC-# | 2236241 | 2236239 | 2236240 | 2236242 | 2236238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nimax, P.; Kunzelmann, Y.; Sünkel, K. Coordination Chemistry of Polynitriles, Part XII—Serendipitous Synthesis of the Octacyanofulvalenediide Dianion and Study of Its Coordination Chemistry with K+ and Ag+. Inorganics 2023, 11, 71. https://doi.org/10.3390/inorganics11020071
Nimax P, Kunzelmann Y, Sünkel K. Coordination Chemistry of Polynitriles, Part XII—Serendipitous Synthesis of the Octacyanofulvalenediide Dianion and Study of Its Coordination Chemistry with K+ and Ag+. Inorganics. 2023; 11(2):71. https://doi.org/10.3390/inorganics11020071
Chicago/Turabian StyleNimax, Patrick, Yannick Kunzelmann, and Karlheinz Sünkel. 2023. "Coordination Chemistry of Polynitriles, Part XII—Serendipitous Synthesis of the Octacyanofulvalenediide Dianion and Study of Its Coordination Chemistry with K+ and Ag+" Inorganics 11, no. 2: 71. https://doi.org/10.3390/inorganics11020071
APA StyleNimax, P., Kunzelmann, Y., & Sünkel, K. (2023). Coordination Chemistry of Polynitriles, Part XII—Serendipitous Synthesis of the Octacyanofulvalenediide Dianion and Study of Its Coordination Chemistry with K+ and Ag+. Inorganics, 11(2), 71. https://doi.org/10.3390/inorganics11020071