Surface Characterization and Electrical Properties of Low Energy Irradiated PANI/PbS Polymeric Nanocomposite Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. SRIM/TRIM Simulation Data
2.2. Structure of the PANI/PbS
2.3. DSC of PANI/PbS
2.4. FTIR of PANI/PbS
2.5. Surface Morphology of PANI/PbS
2.6. Dielectric Properties of PANI/PbS
3. Materials and Methods
3.1. Synthesis
3.2. Ion Source Description
3.3. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zwawi, M.; Attar, A.; Al-Hossainy, A.F.; Abdel-Aziz, M.H.; Zoromba, M.S. Polypyrrole/functionalized multi-walled carbon nanotube composite for optoelectronic device application. Chem. Pap. 2021, 75, 6575–6589. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Alamri, H.R.; Hamad, M.A. Investigation on Giant Electrocaloric Properties in Ferroelectric Polymer P (VDF-TrFE)(65/35). Russ. J. Phys. Chem. A 2022, 96, 2259–2264. [Google Scholar] [CrossRef]
- Iqubal, S.M. Characterization, surface morphology and microstructure of water soluble colloidal MnO2 nanoflakes. J. Umm Al-Qura Univ. Appl. Sci. 2022, 8, 33–36. [Google Scholar] [CrossRef]
- Ashour, G.; Hussein, M.; Sobahi, T. Nanocomposite containing polyamide and GNS for enhanced properties. Synthesis and characterization. J. Umm Al-Qura Univ. Appl. Sci. 2021, 7, 1–6. [Google Scholar]
- Fauzi, A.A.A.; Osman, A.F.; Alrashdi, A.A.; Mustafa, Z.; Halim, K.A.A. On the Use of Dolomite as a Mineral Filler and Co-Filler in the Field of Polymer Composites: A Review. Polymers 2022, 14, 2843. [Google Scholar] [CrossRef]
- Fang, Y.-S.; He, P.; Cai, Y.-Z.; Cao, W.-Q.; Cao, M.-S. Bifunctional Ti3C2Tx–CNT/PANI composite with excellent electromagnetic shielding and supercapacitive performance. Ceram. Int. 2021, 47, 25531–25540. [Google Scholar] [CrossRef]
- Maruthi, N.; Faisal, M.; Raghavendra, N.; Prasanna, B.; Manohara, S.; Revanasiddappa, M. Anticorrosive polyaniline-coated copper oxide (PANI/CuO) nanocomposites with tunable electrical properties for broadband electromagnetic interference shielding. Colloids Surfaces A Physicochem. Eng. Asp. 2021, 621, 126611. [Google Scholar] [CrossRef]
- Wei, H.; Kong, D.; Li, T.; Xue, Q.; Wang, S.; Cui, D.; Huang, Y.; Wang, L.; Hu, S.; Wan, T.; et al. Solution-Processable Conductive Composite Hydrogels with Multiple Synergetic Networks toward Wearable Pressure/Strain Sensors. ACS Sensors 2021, 6, 2938–2951. [Google Scholar] [CrossRef]
- Rashid, I.A.; Tariq, A.; Shakir, H.F.; Afzal, A.; Ali, F.; Abuzar, M.; Haider, T. Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications. J. Reinf. Plast. Compos. 2021, 41, 34–45. [Google Scholar] [CrossRef]
- Alotaibi, B.M.; Al-Yousef, H.A.; Alsaif, N.A.M.; Atta, A. Characterization and optical properties of polymer nanocomposite films for optoelectronic applications. Surf. Innov. 2022, 11, 142–154. [Google Scholar] [CrossRef]
- Atta, A.; Abdelhamied, M.M.; Essam, D.; Shaban, M.; Alshammari, A.H.; Rabia, M. Structural and physical properties of polyaniline/silver oxide/silver nanocomposite electrode for supercapacitor applications. Int. J. Energy Res. 2022, 46, 6702–6710. [Google Scholar] [CrossRef]
- Ponnamma, D.; Cabibihan, J.-J.; Rajan, M.; Pethaiah, S.S.; Deshmukh, K.; Gogoi, J.P.; Pasha, S.K.K.; Ahamed, M.B.; Krishnegowda, J.; Chandrashekar, B.N.; et al. Synthesis, optimization and applications of ZnO/polymer nanocomposites. Mater. Sci. Eng. C 2019, 98, 1210–1240. [Google Scholar] [CrossRef] [PubMed]
- Hezam, F.; Rajeh, A.; Nur, O.; Mustafa, M. Synthesis and physical properties of spinel ferrites/MWCNTs hybrids nanocomposites for energy storage and photocatalytic applications. Phys. B: Condens. Matter 2020, 596, 412389. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, W.; Dong, G.; Zhang, D. A high-performance room temperature methanol gas sensor based on alpha-iron oxide/polyaniline/PbS quantum dots nanofilm. J. Mater. Sci. Mater. Electron. 2019, 30, 17907–17915. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Shao, G.; Zhang, W.; Wang, W.; Song, H.; Cao, H.; Ma, W.; Tang, J. Enhancement of hydrogen sulfide gas sensing of PbS colloidal quantum dots by remote doping through ligand exchange. Sens. Actuators B Chem. 2015, 212, 434–439. [Google Scholar] [CrossRef]
- Eita, M.; Usman, A.; El-Ballouli, A.O.; Alarousu, E.; Bakr, O.M.; Mohammed, O.F. A Layer-by-Layer ZnO Nanoparticle-PbS Quantum Dot Self-Assembly Platform for Ultrafast Interfacial Electron Injection. Small 2015, 11, 112–118. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, L.; Wang, H.; Xiong, M.; Yang, T.; Zakharova, G.S. Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B Chem. 2016, 236, 529–536. [Google Scholar] [CrossRef]
- Rabia, M.; Mohamed, H.S.H.; Shaban, M.; Taha, S. Preparation of polyaniline/PbS core-shell nano/microcomposite and its application for photocatalytic H2 electrogeneration from H2O. Sci. Rep. 2018, 8, 1107. [Google Scholar] [CrossRef]
- Gamal, A.; Shaban, M.; BinSabt, M.; Moussa, M.; Ahmed, A.M.; Rabia, M.; Hamdy, H. Facile Fabrication of Polyaniline/Pbs Nanocomposite for High-Performance Supercapacitor Application. Nanomaterials 2022, 12, 817. [Google Scholar] [CrossRef]
- Demirbay, T.; Çağlar, M.; Karabul, Y.; Kılıç, M.; İçelli, O.; Özdemir, Z.G. Availability of water glass/Bi2O3 composites in dielectric and gamma-ray screening applications. Radiat. Eff. Defects Solids 2019, 174, 419–434. [Google Scholar] [CrossRef]
- Kılıç, M.; Özdemir, Z.G.; Alkan, Ü.; Karabul, Y.; İçelli, O. Effects of the γ-irradiation strength and basalt additive content on the mechanical performance and dielectric response of polypropylene films. J. Appl. Polym. Sci. 2019, 136, 47414. [Google Scholar] [CrossRef]
- Erdönmez, S.; Karabul, Y.; Kılıç, M.; Özdemir, Z.G.; Esmer, K. Structural characterization and dielectric parameters of polyindole/WO3 nanocomposites. Polym. Compos. 2021, 42, 1347–1355. [Google Scholar] [CrossRef]
- Kilic, M.; Karabul, Y.; Ozdemir, Z.G.; Misirlioglu, B.S.; Icelli, O. Improved dielectric and electrical properties of PANI achieved by using low cost mineral additive. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 300–307. [Google Scholar] [CrossRef]
- Kılıç, M.; Kahya, N.D.; Mısırlıoğlu, B.S.; Çakır, Ö.; Özdemir, Z.G. Dielectric and magnetic properties of CuFe2O4/CuO nanocomposites. Ferroelectrics 2021, 571, 183–199. [Google Scholar] [CrossRef]
- Shaban, M.; Rabia, M.; El-Sayed, A.M.A.; Ahmed, A.; Sayed, S. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci. Rep. 2017, 7, 14100. [Google Scholar] [CrossRef]
- Atta, A.; Abdel-Hamid, H.M.; Fawzy, Y.H.A.; El-Okr, M.M. Characterization and optimization of low-energy broad-beam ion source. Emerg. Mater. Res. 2019, 8, 354–359. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Dhillon, R.K.; Singh, P.; Gupta, S.K.; Singh, S.; Kumar, R. Study of high energy (MeV) N6+ ion and gamma radiation induced modifications in low density polyethylene (LDPE) polymer. Nucl. Instruments Methods Phys. Res. Sect. B: Beam Interactions Mater. Atoms 2013, 301, 12–16. [Google Scholar] [CrossRef]
- Atta, A.; Althubiti, N.A.; Althubiti, S. Oxygen plasma irradiation-induced surface modifications on HDPE and PET polymeric films. J. Korean Phys. Soc. 2021, 79, 386–394. [Google Scholar] [CrossRef]
- Abdel-Galil, A.; Atta, A.; Balboul, M.R. Effect of low-energy oxygen ion beam treatment on the structural and physical properties of ZnO thin films. Surf. Rev. Lett. 2020, 27, 2050019. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, V.; Dhand, C.; Kaur, M.; Singh, T.; Witte, K.; Scherer, U.W. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor. Sensors 2006, 6, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Atta, A.; Abdeltwab, E. Influence of Ion Irradiation on the Surface Properties of Silver-Coated Flexible PDMS Polymeric Films. Braz. J. Phys. 2022, 52, 1–10. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; dos Santos, C.M.; Sasaki, J.M. The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallogr. Sect. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, B.M.; Al-Yousef, H.A.; Alsaif, N.A.; Atta, A. Oxygen beam induced modifications on the structural characteristics and physico-chemical properties of PANI/lead sulfide composite films. Inorg. Chem. Commun. 2022, 144, 109904. [Google Scholar] [CrossRef]
- Singh, I.; Bedi, R. Studies and correlation among the structural, electrical and gas response properties of aerosol spray deposited self assembled nanocrystalline CuO. Appl. Surf. Sci. 2011, 257, 7592–7599. [Google Scholar] [CrossRef]
- Manjunatha, H.; Damle, R.; Kumaraswamy, G.N. Modification of polymer electrolyte blend PEO/PVDF–HFP by low-energy O+ ion irradiation to improve electrolyte behavior. Polym. Bull. 2022, 79, 3929–3950. [Google Scholar] [CrossRef]
- Gomes, E.C.; Oliveira, M.A.S. Chemical Polymerization of Aniline in Hydrochloric Acid (HCl) and Formic Acid (HCOOH) Media. Differences Between the Two Synthesized Polyanilines. Am. J. Polym. Sci. 2012, 2, 5–13. [Google Scholar] [CrossRef]
- Sayyah, S.M.; Shaban, M.; Rabia, M. m-Toluidine Polymer Film Coated Platinum Electrode as a pH Sensor by Potentiometric Methods. Sens. Lett. 2015, 13, 961–966. [Google Scholar] [CrossRef]
- Althubiti, N.A.; Atta, A.; Alotaibi, B.M.; Abdelhamied, M.M. Tailoring the structural and dielectric properties of low energy ion beam irradiated polymer/silver nanocomposite films. Surf. Innov. 2022, 11, 1–11. [Google Scholar]
- Sayyah, S.M.; Shaban, M.; Rabia, M. A highly-sensitive sensor of m-toluidin polymer film for detection of mercuric ions by potentiometric methods. IEEE Sens. J. 2016, 6, 1541–1548. [Google Scholar] [CrossRef]
- Aung, M.T.; Htwe, E.E.P. Characterization on Heterojunction Photovoltaic Cell Utilizing Nanocomposite of Lead Sulfide Nanocrystals and Polyaniline Polymer. Maubin Univ. Res. J. 2020, 11, 197–203. [Google Scholar]
- Abdelhamied, M.; Atta, A.; Abdelreheem, A.; Farag, A.; El Sherbiny, M. Oxygen ion induced variations in the structural and Linear/Nonlinear optical properties of the PVA/PANI/Ag nanocomposite film. Inorg. Chem. Commun. 2021, 133, 108926. [Google Scholar] [CrossRef]
- Ishaq, S.; Kanwal, F.; Atiq, S.; Moussa, M.; Azhar, U.; Gul, I.; Losic, D. Dielectric and impedance spectroscopic studies of three phase graphene/titania/poly(vinyl alcohol) nanocomposite films. Results Phys. 2018, 11, 540–548. [Google Scholar] [CrossRef]
- Abutalib, M.M.; Rajeh, A. Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J. Mater. Sci. Mater. Electron. 2020, 31, 9430–9442. [Google Scholar] [CrossRef]
- Atta, A. Enhanced dielectric properties of flexible Cu/polymer nanocomposite films. Surf. Innov. 2021, 9, 17–24. [Google Scholar] [CrossRef]
- Mahendia, S.; Tomar, A.; Kumar, S. Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films. J. Alloys Compd. 2010, 508, 406–411. [Google Scholar] [CrossRef]
- Abdeltwab, E.; Atta, A. Structural and electrical properties of irradiated flexible ZnO/PVA nanocomposite films. Surf. Innov. 2022, 10, 289–297. [Google Scholar] [CrossRef]
- Fawzy, Y.H.A.; Abdel-Hamid, H.M.; El-Okr, M.M.; Atta, A. Structural, optical and electrical properties of pet polymer films modified by low energy Ar+ ion beams. Surf. Rev. Lett. 2018, 25, 1850066. [Google Scholar] [CrossRef]
- Abdel-Galil, A.; Ali, H.; Atta, A.; Balboul, M. Influence of nanostructured TiO2 additives on some physical characteristics of carboxymethyl cellulose (CMC). J. Radiat. Res. Appl. Sci. 2014, 7, 36–43. [Google Scholar] [CrossRef]
- Sharma, M.; Gaur, A.; Quamara, J.K. Effect of 80 MeV O 6+ ion irradiation on structural, morphological, dielectric, and ferroelectric properties of (1−x) PVDF/(x) BaTiO3 nanocomposites. Ionics 2020, 26, 471–481. [Google Scholar] [CrossRef]
- Amin, G.A.M.; Salam, M.H.A.-E. Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Mater. Res. Express 2014, 1, 025024. [Google Scholar] [CrossRef]
- Thangarasu, R.; Senthilkumar, N.; Babu, B.; Mohanraj, K.; Chandrasekaran, J.; Balasundaram, O. Structural, Optical, Morphological and Electrical Properties of V2O5 Nanorods and Its Ag/n-V2O5/p-Si/Ag Diode Application. J. Adv. Phys. 2018, 7, 312–318. [Google Scholar] [CrossRef]
- Atta, A.; Lotfy, S.; Abdeltwab, E. Dielectric properties of irradiated polymer/multiwalled carbon nanotube and its amino functionalized form. J. Appl. Polym. Sci. 2018, 135, 46647. [Google Scholar] [CrossRef]
- Choudhary, S. Dielectric dispersion and relaxations in (PVA-PEO)-ZnO polymer nanocomposites. Phys. B Condens. Matter 2017, 522, 48–56. [Google Scholar] [CrossRef]
- Gupta, R.; Kumar, R. Influence of low energy ion beam implantation on Cu nanowires synthesized using scaffold-based electrodeposition. Nano Struct. Nano Obj. 2019, 18, 100318. [Google Scholar] [CrossRef]
- Sahu, G.; Das, M.; Yadav, M.; Sahoo, B.P.; Tripathy, J. Dielectric Relaxation Behavior of Silver Nanoparticles and Graphene Oxide Embedded Poly(vinyl alcohol) Nanocomposite Film: An Effect of Ionic Liquid and Temperature. Polymers 2020, 12, 374. [Google Scholar] [CrossRef]
- Atiq, S.; Majeed, M.; Ahmad, A.; Abbas, S.K.; Saleem, M.; Riaz, S.; Naseem, S. Synthesis and investigation of structural, morphological, magnetic, dielectric and impedance spectroscopic characteristics of Ni-Zn ferrite nanoparticles. Ceram. Int. 2017, 43, 2486–2494. [Google Scholar] [CrossRef]
- Jilani, W.; Fourati, N.; Zerrouki, C.; Gallot-Lavallée, O.; Guermazi, H. Optical, Dielectric Properties and Energy Storage Efficiency of ZnO/Epoxy Nanocomposites. J. Inorg. Organomet. Polym. Mater. 2019, 29, 456–464. [Google Scholar] [CrossRef]
- Atta, A.; Alotaibi, B.; Abdelhamied, M. Structural characteristics and optical properties of methylcellulose/polyaniline films modified by low energy oxygen irradiation. Inorg. Chem. Commun. 2022, 141, 109502. [Google Scholar] [CrossRef]
- Ahmed, H.; Hashim, A. Fabrication of PVA/NiO/SiC Nanocomposites and Studying their Dielectric Properties For Antibacterial Applications. Egypt. J. Chem. 2020, 63, 805–811. [Google Scholar] [CrossRef]
- Abdelhamied, M.M.; Abdelreheem, A.M.; Atta, A. Influence of ion beam and silver nanoparticles on dielectric properties of flexible PVA/PANI polymer composite films. Plast. Rubber Compos. 2021, 51, 1–12. [Google Scholar] [CrossRef]
- Hashim, A.; Hadi, A. Novel Pressure Sensors Made from Nanocomposites (Biodegradable Polymers–Metal Oxide Nanoparticles): Fabrication and Characterization. Ukr. J. Phys. 2018, 63, 754. [Google Scholar] [CrossRef]
- Abdeltwab, E.; Atta, A. Influence of ZnO nanoadditives on the structural characteristics and dielectric properties of PVA. Int. J. Mod. Phys. B 2021, 35, 2150310. [Google Scholar] [CrossRef]
D [nm] | R [µm] | δ [10−4 Lines/m2] | ε [10−3] | g (%) | |
---|---|---|---|---|---|
PANI/PbS | 45.88 | 3.04 | 4.75 | 3.44 | 0.0138 |
5 × 1016 ions/cm2 | 44.23 | 2.93 | 5.11 | 3.56 | 0.0143 |
10 × 1016 ions/cm2 | 42.18 | 2.79 | 5.62 | 3.74 | 0.0150 |
15 × 1016 ions/cm2 | 40.36 | 2.67 | 6.13 | 3.92 | 0.0157 |
ε′ | ε″ | M′ | M″ | σac (S/cm) | U(J/m3) | |
---|---|---|---|---|---|---|
PANI/PbS | 31 | 31.6 | 0.046 | 0.037 | 1.45 × 10−3 | 0.17 × 10−3 |
5 × 1016 ions/cm2 | 341 | 65.5 | 0.040 | 0.015 | 2.15 × 10−3 | 1.5 × 10−3 |
10 × 1016 ions/cm2 | 580 | 111 | 0.014 | 0.005 | 2.90 × 10−3 | 2.56 × 10−3 |
15 × 1016 ions/cm2 | 611 | 126 | 0.004 | 0.0005 | 25.9 × 10−3 | 2.7 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althubiti, N.A.; Al-Harbi, N.; Sendi, R.K.; Atta, A.; Henaish, A.M.A. Surface Characterization and Electrical Properties of Low Energy Irradiated PANI/PbS Polymeric Nanocomposite Materials. Inorganics 2023, 11, 74. https://doi.org/10.3390/inorganics11020074
Althubiti NA, Al-Harbi N, Sendi RK, Atta A, Henaish AMA. Surface Characterization and Electrical Properties of Low Energy Irradiated PANI/PbS Polymeric Nanocomposite Materials. Inorganics. 2023; 11(2):74. https://doi.org/10.3390/inorganics11020074
Chicago/Turabian StyleAlthubiti, Numa A., Nuha Al-Harbi, Rabab K. Sendi, Ali Atta, and Ahmed. M. A. Henaish. 2023. "Surface Characterization and Electrical Properties of Low Energy Irradiated PANI/PbS Polymeric Nanocomposite Materials" Inorganics 11, no. 2: 74. https://doi.org/10.3390/inorganics11020074
APA StyleAlthubiti, N. A., Al-Harbi, N., Sendi, R. K., Atta, A., & Henaish, A. M. A. (2023). Surface Characterization and Electrical Properties of Low Energy Irradiated PANI/PbS Polymeric Nanocomposite Materials. Inorganics, 11(2), 74. https://doi.org/10.3390/inorganics11020074