Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials for the Preparation of Bulk Catalyst Precursors
3.2. Preparation of Bulk Catalyst Precursors
3.3. Testing Bulk Catalyst Precursors in the Hydrotreatment of SRGO
3.4. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gochi, Y.; Alvarez-Contreras, L.; Paraguay-Delgado, F.; Alonso-Nunez, G. Influence of the Presence of Al2O3 on Ni–Mo–W Trimetallic Catalysts for HDS. Int. J. Mater. Prod. Technol. 2006, 27, 130–140. [Google Scholar] [CrossRef]
- Plantenga, F.L.; Cerfontain, R.; Eijsbouts, S.; Houtert, F.; Anderson, G.H.; Miseo, S.; Soled, S.; Riley, K.; Fujita, K.; Inoue, Y. “NEBULA”: A Hydroprocessing Catalyst with Breakthrough Activity. Stud. Surf. Sci. Catal. 2003, 145, 407–410. [Google Scholar] [CrossRef]
- Eijsbouts, S.; Mayo, S.; Fujita, K. Unsupported Transition Metal Sulfide Catalysts: From Fundamentals to Industrial Application. Appl. Catal. A General 2007, 322, 58–66. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, J.; Nan, J.; Geng, S.; Zhang, Y.; Shi, Y.; Qu, X.; Liu, H. Synthesis and Hydrodesulfurization Performance of Bulk Ni–Mo–W Catalyst with High Surface Area. Adv. Mater. Res. 2013, 634–638, 604–607. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Y.; Xue, S.; Liu, H.; Li, H.; Liu, C. Influence of Sulfidation Conditions on Morphology and Hydrotreating Performance of Unsupported Ni–Mo–W Catalysts. Fuel 2016, 175, 13–19. [Google Scholar] [CrossRef]
- Nadeina, K.A.; Budukva, S.V.; Vatutina, Y.V.; Mukhacheva, P.P.; Gerasimov, E.Y.; Pakharukova, V.P.; Klimov, O.V.; Noskov, A.S. Unsupported Ni–Mo–W Hydrotreating Catalyst: Influence of the Atomic Ratio of Active Metals on the HDS and HDN Activity. Catalysts 2022, 12, 1671. [Google Scholar] [CrossRef]
- Licea, Y.E.; Grau-Crespo, R.; Palacio, L.A.; Faro, A.C. Unsupported Trimetallic Ni(Co)–Mo–W Sulphide Catalysts Prepared from Mixed Oxides: Characterisation and Catalytic Tests for Simultaneous Tetralin HDA and Dibenzothiophene HDS Reactions. Catal. Today 2017, 292, 84–96. [Google Scholar] [CrossRef]
- Arias, S.; Licea Fonseca, Y.; Soares, D.; Eon, J.-G.; Palacio, L.; Faro, A., Jr. Mixed NiMo, NiW and NiMoW Sulfides Obtained from Layered Double Hydroxides as Catalysts in Simultaneous HDA and HDS Reactions. Catal. Today 2017, 296, 187–196. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Z.; Tang, C.; Li, L.; Wang, D. The Effect of Nickel Content on the Hydrodeoxygenation of 4–Methylphenol over Unsupported NiMoW Sulfide Catalysts. Catal. Commun. 2013, 32, 76–80. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, B.; Jin, X.; Wang, L.; Williams, C.T.; Xiong, G.; Su, D.S.; Liang, C. Unsupported NiMoW Sulfide Catalysts for Hydrodesulfurization of Dibenzothiophene by Thermal Decomposition of Thiosalts. J. Mol. Catal. A Chemical 2011, 351, 120–127. [Google Scholar] [CrossRef]
- Sizova, I.; Kulikov, A.; Onishchenko, M.; Serdyukov, S.; Maksimov, A. Synthesis of Nickel–Tungsten Sulfide Hydrodearomatization Catalysts by the Decomposition of Oil–Soluble Precursors. Pet. Chem. 2016, 56, 44–50. [Google Scholar] [CrossRef]
- Topsøe, H.; Clausen, B.S.; Candia, R.; Wivel, C.; Mørup, S. In Situ Mössbauer Emission Spectroscopy Studies of Unsupported and Supported Sulfided Co–Mo Hydrodesulfurization Catalysts: Evidence for and Nature of a Co–Mo–S Phase. J. Catal. 1981, 68, 433–452. [Google Scholar] [CrossRef]
- Huirache-Acuña, R.; Albiter, M.A.; Espino, J.; Ornelas, C.; Alonso-Nuñez, G.; Paraguay-Delgado, F.; Rico, J.L.; Martínez-Sánchez, R. Synthesis of Ni–Mo–W Sulphide Catalysts by Ex Situ Decomposition of Trimetallic Precursors. Appl. Catal. A Gen. 2006, 304, 124–130. [Google Scholar] [CrossRef]
- Pinaeva, L.; Prosvirin, I.; Chesalov, Y.; Atuchin, V. High–Temperature Abatement of N2O over FeOx/CeO2–Al2O3 Catalysts: The Effects of Oxygen Mobility. Catalysts 2022, 12, 938. [Google Scholar] [CrossRef]
- Albersberger, S.; Hein, J.; Schreiber, M.W.; Guerra, S.; Han, J.; Gutiérrez, O.Y.; Lercher, J.A. Simultaneous Hydrodenitrogenation and Hydrodesulfurization on Unsupported Ni–Mo–W Sulfides. Catal. Today 2017, 297, 344–355. [Google Scholar] [CrossRef]
- Soled, S.L.; Miseo, S.; Eijsbouts, S.; Plantenga, F.L. Bulk Bimetallic Catalysts, Method of Making Bulk Bimetallic Catalysts and Hydroprocessing Using Bulk Bimetallic Catalysts. U.S. Patent 7648941, 19 January 2010. [Google Scholar]
- Yin, C.; Wang, Y. Effect of Sulfidation Process on Catalytic Performance over Unsupported Ni–Mo–W Hydrotreating Catalysts. Korean J. Chem. Eng. 2017, 34, 1004–1012. [Google Scholar] [CrossRef]
- Amaya, S.L.; Alonso-Núñez, G.; Zepeda, T.A.; Fuentes, S.; Echavarría, A. Effect of the Divalent Metal and the Activation Temperature of NiMoW and CoMoW on the Dibenzothiophene Hydrodesulfurization Reaction. Appl. Catal. B Environ. 2014, 148–149, 221–230. [Google Scholar] [CrossRef]
- Yue, L.; Li, G.; Zhang, F.; Chen, L.; Li, X.; Huang, X. Size–Dependent Activity of Unsupported Co–Mo Sulfide Catalysts for the Hydrodesulfurization of Dibenzothiophene. Appl. Catal. A Gen. 2016, 512, 85–92. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Zhang, Y.; Liu, T.; Liu, X.; Jiang, Z.; Li, C. A New Multi–Metallic Bulk Catalyst with High Hydrodesulfurization Activity of 4,6–DMDBT Prepared Using Layered Hydroxide Salts as Structural Templates. Appl. Catal. A Gen. 2014, 474, 69–77. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; Yin, C.; Chai, Y.; Li, Y.; Liu, D.; Liu, B.; Li, X.; Wang, Y.; Li, X. Preparation of Highly Active Unsupported Nickel–Zinc–Molybdenum Catalysts for the Hydrodesulfurization of Dibenzothiophene. Appl. Catal. B Environ. 2015, 174–175, 264–276. [Google Scholar] [CrossRef]
- Yin, C.; Zhao, L.; Bai, Z.; Liu, H.; Liu, Y.; Liu, C. A Novel Porous Ammonium Nickel Molybdate as the Catalyst Precursor towards Deep Hydrodesulfurization of Gas Oil. Fuel 2013, 107, 873–878. [Google Scholar] [CrossRef]
- Vatutina, Y.V.; Kazakov, M.O.; Nadeina, K.A.; Budukva, S.V.; Danilova, I.G.; Gerasimov, E.Y.; Suprun, E.A.; Prosvirin, I.P.; Nikolaeva, O.A.; Gabrienko, A.A.; et al. Is It Possible to Reactivate Hydrotreating Catalyst Poisoned by Silicon? Catal. Today 2021, 378, 43–56. [Google Scholar] [CrossRef]
- Eijsbouts, S.; van den Oetelaar, L.C.A.; Rayner, M.; Govaers, H.; Boonen, T. Combined HR TEM and STEM–EDX Evaluation—The Key to Better Understanding of the Co–Mo Sulfide Active Phase in Real–Life Co–Mo–P/Al2O3 Catalysts. J. Catal. 2021, 403, 56–73. [Google Scholar] [CrossRef]
- Oudghiri Hassani, H.; Wadaani, F. Preparation, Characterization and Catalytic Activity of Nickel Molybdate (NiMoO4) Nanoparticles. Molecules 2018, 23, 273. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Minakshi, M.; Whale, J.; Jean-Fulcrand, A.; Garnweitner, G. Effect of the Anionic Counterpart: Molybdate vs. Tungstate in Energy Storage for Pseudo–Capacitor Applications. Nanomaterials 2021, 11, 580. [Google Scholar] [CrossRef]
- Wang, X.-X.; Li, Y.; Liu, M.-C.; Kong, L.-B. Fabrication and Electrochemical Investigation of MWO4 (M = Co, Ni) Nanoparticles as High–Performance Anode Materials for Lithium–Ion Batteries. Ionics 2018, 24, 363–372. [Google Scholar] [CrossRef]
- Niu, L.; Li, Z.; Xu, Y.; Sun, J.; Hong, W.; Liu, X.; Wang, J.; Yang, S. Simple Synthesis of Amorphous NiWO4 Nanostructure and Its Application as a Novel Cathode Material for Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052. [Google Scholar] [CrossRef]
- Dabbous, S.; Ben Nasrallah, T.; Ouerfelli, J.; Boubaker, K.; Amlouk, M.; Belgacem, S. Study of Structural and Optical Properties of Sprayed WO3 Thin Films Using Enhanced Characterization Techniques along with the Boubaker Polynomials Expansion Scheme (BPES). J. Alloys Compd. 2009, 487, 286–292. [Google Scholar] [CrossRef]
- Famili, Z.; Dorranian, D.; Sari, A.H. Laser Ablation–Assisted Synthesis of Tungsten Sub–Oxide (W17O47) Nanoparticles in Water: Effect of Laser Fluence. Opt. Quant. Electron. 2020, 52, 305. [Google Scholar] [CrossRef]
- Levin, D.; Soled, S.L.; Ying, J.Y. Crystal Structure of an Ammonium Nickel Molybdate Prepared by Chemical Precipitation. Inorg. Chem. 1996, 35, 4191–4197. [Google Scholar] [CrossRef]
- Amaya, S.L.; Alonso-Núñez, G.; Cruz-Reyes, J.; Fuentes, S.; Echavarría, A. Influence of the Sulfidation Temperature in a NiMoW Catalyst Derived from Layered Structure (NH4)Ni2OH(H2O)(MoO4)2. Fuel 2015, 139, 575–583. [Google Scholar] [CrossRef]
- García-Pérez, D.; Blanco-Brieva, G.; Alvarez-Galvan, M.C.; Campos-Martin, J.M. Influence of W Loading, Support Type, and Preparation Method on the Performance of Zirconia or Alumina–Supported Pt Catalysts for n–Dodecane Hydroisomerization. Fuel 2022, 319, 123704. [Google Scholar] [CrossRef]
- Rico, J.L.; Albiter, M.; Espino, J.; Hargreaves, J.S.J.; Ostroumov, M.; Salcedo, L.I.; Wilson, K. Synthesis and Ammonolysis of Nickel and Cobalt Tungstates and Their Characterisation. J. Saudi Chem. Soc. 2016, 20, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Marins, A.A.L.; Banhos, S.G.; Muri, E.J.B.; Rodrigues, R.V.; Cruz, P.C.M.; Freitas, M.B.J.G. Synthesis by Coprecipitation with Oxalic Acid of Rare Earth and Nickel Oxides from the Anode of Spent Ni–MH Batteries and Its Electrochemical Properties. Mater. Chem. Phys. 2020, 242, 122440. [Google Scholar] [CrossRef]
- Popovych, O.M.; Budzulyak, I.M.; Yukhymchuk, V.O.; Budzulyak, S.I.; Popovych, D.I. Raman Spectroscopy of Nickel Molybdate and Its Modifications. Fuller. Nanotub. Carbon Nanostructures 2021, 29, 1009–1015. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Aleksandrovsky, A.S.; Chimitova, O.D.; Gavrilova, T.A.; Krylov, A.S.; Molokeev, M.S.; Oreshonkov, A.S.; Bazarov, B.G.; Bazarova, J.G. Synthesis and Spectroscopic Properties of Monoclinic A–Eu2(MoO4). J. Phys. Chem. C 2014, 118, 15404–15411. [Google Scholar] [CrossRef]
- Zhao, P.; Murshed, M.M.; Alekseev, E.V.; Atuchin, V.V.; Pugachev, A.M.; Gesing, T.M. Synthesis, Structure and Properties of Na[AsW2O9]. Mater. Res. Bull. 2014, 60, 258–263. [Google Scholar] [CrossRef]
- Alekseev, E.V.; Felbinger, O.; Wu, S.; Malcherek, T.; Depmeier, W.; Modolo, G.; Gesing, T.M.; Krivovichev, S.V.; Suleimanov, E.V.; Gavrilova, T.A.; et al. K[AsW2O9], the First Member of the Arsenate–Tungsten Bronze Family: Synthesis, Structure, Spectroscopic and Non–Linear Optical Properties. J. Solid State Chem. 2013, 204, 59–63. [Google Scholar] [CrossRef]
- Prosnikov, M.A.; Davydov, V.Y.; Smirnov, A.N.; Volkov, M.P.; Pisarev, R.V.; Becker, P.; Bohatý, L. Lattice and Spin Dynamics in a Low–Symmetry Antiferromagnet NiWO4. Phys. Rev. B 2017, 96, 014428. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.C.; Zheng, L.; Zhang, Z.M.; Dai, R.C.; Wang, Z.P.; Zhang, J.W.; Ding, Z.J. Raman Studies of Hexagonal MoO3 at High Pressure. Phys. Status Solidi. 2011, 248, 1119–1122. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Gavrilova, T.A.; Grigorieva, T.I.; Kuratieva, N.V.; Okotrub, K.A.; Pervukhina, N.V.; Surovtsev, N.V. Sublimation Growth and Vibrational Microspectrometry of α–MoO3 Single Crystals. J. Cryst. Growth 2011, 318, 987–990. [Google Scholar] [CrossRef]
- Díaz-Reyes, J.; Castillo-Ojeda, R.; Galván-Arellano, M.; Zaca-Moran, O. Characterization of WO3 Thin Films Grown on Silicon by HFMOD. Adv. Condens. Matter Phys. 2013, 2013, 591787. [Google Scholar] [CrossRef] [Green Version]
- Budukva, S.V.; Klimov, O.V.; Uvarkina, D.D.; Chesalov, Y.A.; Prosvirin, I.P.; Larina, T.V.; Noskov, A.S. Effect of Citric Acid and Triethylene Glycol Addition on the Reactivation of CoMo/γ–Al2O3 Hydrotreating Catalysts. Catal. Today 2019, 329, 35–43. [Google Scholar] [CrossRef]
- Duan, A.; Li, R.; Jiang, G.; Gao, J.; Zhao, Z.; Wan, G.; Zhang, D.; Huang, W.; Chung, K.H. Hydrodesulphurization Performance of NiW/TiO2–Al2O3 Catalyst for Ultra Clean Diesel. Catal. Today 2009, 140, 187–191. [Google Scholar] [CrossRef]
- Gutiérrez-Alejandre, A.; Ramírez, J.; Busca, G. The Electronic Structure of Oxide–Supported Tungsten Oxide Catalysts as Studied by UV Spectroscopy. Catal. Lett. 1998, 56, 29–33. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y. Spectroscopic Studies on Tetragonal ZrO2–Supported MoO3 and NiO−MoO3 Systems. J. Catal. 1998, 177, 314–324. [Google Scholar] [CrossRef]
- Suárez-Toriello, V.A.; Santolalla-Vargas, C.E.; De Los Reyes, J.A.; Vázquez-Zavala, A.; Vrinat, M.; Geantet, C. Influence of the Solution PH in Impregnation with Citric Acid and Activity of Ni/W/Al2O3 Catalysts. J. Mol. Catal. A Chem. 2015, 404–405, 36–46. [Google Scholar] [CrossRef]
- Ross-Medgaarden, E.I.; Wachs, I.E. Structural Determination of Bulk and Surface Tungsten Oxides with UV−vis Diffuse Reflectance Spectroscopy and Raman Spectroscopy. J. Phys. Chem. C 2007, 111, 15089–15099. [Google Scholar] [CrossRef]
- Tian, H.; Roberts, C.A.; Wachs, I.E. Molecular Structural Determination of Molybdena in Different Environments: Aqueous Solutions, Bulk Mixed Oxides, and Supported MoO3 Catalysts. J. Phys. Chem. C 2010, 114, 14110–14120. [Google Scholar] [CrossRef]
- Gajbhiye, N.S.; Balaji, G. Synthesis, Reactivity, and Cations Inversion Studies of Nanocrystalline MnFe2O4 Particles. Thermochim. Acta 2002, 385, 143–151. [Google Scholar] [CrossRef]
- Bocher, L.; Aguirre, M.H.; Robert, R.; Trottmann, M.; Logvinovich, D.; Hug, P.; Weidenkaff, A. Chimie Douce Synthesis and Thermochemical Characterization of Mesoporous Perovskite–Type Titanate Phases. Thermochim. Acta 2007, 457, 11–19. [Google Scholar] [CrossRef]
- Rajendran, M.; Rao, M.S. Formation of BaTiO3 from Citrate Precursor. J. Solid State Chem. 1994, 113, 239–247. [Google Scholar] [CrossRef]
- Rajendran, M.; Rao, S.M. Synthesis and Characterization of Barium Bis(Citrato) Oxozirconate(IV) Tetrahydrate: A New Molecular Precursor for Fine Particle BaZrO3. J. Mater. Res. 1994, 9, 2277–2284. [Google Scholar] [CrossRef]
- Kovács, T.N.; Hunyadi, D.; de Lucena, A.L.A.; Szilágyi, I.M. Thermal Decomposition of Ammonium Molybdates. J. Therm. Anal. Calorim. 2016, 124, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Fait, M.J.G.; Lunk, H.-J.; Feist, M.; Schneider, M.; Dann, J.N.; Frisk, T. Thermal Decomposition of Ammonium Paratungstate Tetrahydrate under Non–Reducing Conditions: Characterization by Thermal Analysis, X-ray Diffraction and Spectroscopic Methods. Thermochim. Acta 2008, 469, 12–22. [Google Scholar] [CrossRef]
- Hunyadi, D.; Sajó, I.; Szilágyi, I.M. Structure and Thermal Decomposition of Ammonium Metatungstate. J. Therm. Anal. Calorim. 2014, 116, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Atuchin, V.V.; Aleksandrovsky, A.S.; Chimitova, O.D.; Diao, C.-P.; Gavrilova, T.A.; Kesler, V.G.; Molokeev, M.S.; Krylov, A.S.; Bazarov, B.G.; Bazarova, J.G.; et al. Electronic Structure of β–RbSm(MoO4)2 and Chemical Bonding in Molybdates. Dalt. Trans. 2015, 44, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Xu, G. Peak Overlaps and Corresponding Solutions in the X-Ray Photoelectron Spectroscopic Study of Hydrodesulfurization Catalysts. Appl. Surf. Sci. 2010, 256, 3413–3417. [Google Scholar] [CrossRef]
- Romanova, T.S.; Nadeina, K.A.; Danilova, I.G.; Danilevich, V.V.; Pakharukova, V.P.; Gabrienko, A.A.; Glazneva, T.S.; Gerasimov, E.Y.; Prosvirin, I.P.; Vatutina, Y.V.; et al. Modification of HDT Catalysts of FCC Feedstock by Adding Silica to the Kneading Paste of Alumina Support: Advantages and Disadvantages. Fuel 2022, 324, 124555. [Google Scholar] [CrossRef]
- Scott, C.E.; Perez-Zurita, M.J.; Carbognani, L.A.; Molero, H.; Vitale, G.; Guzmán, H.J.; Pereira-Almao, P. Preparation of NiMoS Nanoparticles for Hydrotreating. Catal. Today 2015, 250, 21–27. [Google Scholar] [CrossRef]
- Atuchin, V.; Galashov, E.; Khyzhun, O.; Kozhukhov, A.; Pokrovsky, L.; Shlegel, V. Structural and Electronic Properties of ZnWO4(010) Cleaved Surface. Cryst. Growth Des. 2011, 11, 2479–2484. [Google Scholar] [CrossRef]
- Korobeishchikov, N.G.; Nikolaev, I.V.; Atuchin, V.V.; Prosvirin, I.P.; Kapishnikov, A.V.; Tolstogouzov, A.; Fu, D.J. Quantifying the Surface Modification Induced by the Argon Cluster Ion Bombardment of KGd(WO4)2: Nd Single Crystal. Mater. Res. Bull. 2023, 158, 112082. [Google Scholar] [CrossRef]
- Ben Tayeb, K.; Lamonier, C.; Lancelot, C.; Fournier, M.; Payen, E.; Bonduelle, A.; Bertoncini, F. Study of the Active Phase of NiW Hydrocracking Sulfided Catalysts Obtained from an Innovative Heteropolyanion Based Preparation. Catal. Today 2010, 150, 207–212. [Google Scholar] [CrossRef]
- Orsini, G.; Tricoli, V. Facile Nonhydrolytic Sol–Gel Route to Mesoporous Mixed–Conducting Tungsten Oxide. J. Mater. Chem. 2011, 21, 14530–14542. [Google Scholar] [CrossRef]
- Ghosh, K.; Roy, A.; Tripathi, S.; Ghule, S.; Singh, A.; Narayanan, R. Insights into Nucleation, Growth and Phase Selection of WO3: Morphology Control and Electrochromic Property. J. Mater. Chem. C 2017, 5, 7307–7316. [Google Scholar] [CrossRef]
- Wang, C.; Zan, X.; Wu, Z.; Wang, Z.; Chaoyun, T.; Zhou, P. Effect of W Addition on the Hydrodeoxygenation of 4–Methylphenol over Unsupported NiMo Sulfide Catalysts. Appl. Catal. A Gen. 2014, 476, 61–67. [Google Scholar] [CrossRef]
- Rodriguez-Castellon, E.; Jiménez-López, A.; Eliche-Quesada, D. Nickel and Cobalt Promoted Tungsten and Molybdenum Sulfide Mesoporous Catalysts for Hydrodesulfurization. Fuel 2008, 87, 1195–1206. [Google Scholar] [CrossRef]
- Hu, F.; Ye, R.; Jin, C.; Liu, D.; Chen, X.; Li, C.; Lim, K.H.; Song, G.; Wang, T.; Feng, G.; et al. Ni Nanoparticles Enclosed in Highly Mesoporous Nanofibers with Oxygen Vacancies for Efficient CO2 Methanation. Appl. Catal. B Environ. 2022, 317, 121715. [Google Scholar] [CrossRef]
- Soled, S.; Miseo, S.; Eijsbouts, S.; Plantenga, F. Bulk Bimetallic Catalysts, Method of Making Bulk Bimetallic Catalysts and Hydroprocessing Using Bulk Bimetallic Catalysts. U.S. Patent 20070084754, 19 January 2010. [Google Scholar]
- Soled, S.L.; Riley, K.L.; Schleicher, G.P. Hydroprocessing Using Bulk Group VIII/Group VIB Catalysts (HEN–9901). U.S. Patent 6162350, 19 December 2020. [Google Scholar]
- Nadeina, K.A.; Danilevich, V.V.; Kazakov, M.O.; Romanova, T.S.; Gabrienko, A.A.; Danilova, I.G.; Pakharukova, V.A.; Nikolaeva, O.A.; Gerasimov, E.Y.; Prosvirin, I.P.; et al. Silicon Doping Effect on the Properties of the Hydrotreating Catalysts of FCC Feedstock Pretreatment. Appl. Catal. B Environ. 2021, 280, 119415. [Google Scholar] [CrossRef]
Precursor | Type of Synthesis | Reagents | Temperature, °C | Reaction Time of Synthesis | Weight Loss upon Ignition, % | Weight of Catalyst Loading in the Reactor per Metal Oxide, g |
---|---|---|---|---|---|---|
Ni1Mo0.5W0.5–HT–1 | Hydrothermal synthesis | Basic nickel(II) carbonate, AHM, AMT | T of hydrothermal treatment: 170 °C | Hydrothermal treatment: 6 h | 7.6 | 1.85 |
Ni1Mo0.5W0.5–HT–2 | Basic nickel(II) carbonate, MoO3, H2WO4 | T of hydrothermal treatment: 150 °C | 5.0 | 1.90 | ||
Ni1Mo0.5W0.5–HT–3 | Basic nickel(II) carbonate, MoO3, H2WO4 | T of hydrothermal treatment: 170 °C | 5.5 | 1.89 | ||
Ni1Mo0.5W0.5–HT–4 | Basic nickel(II) carbonate, MoO3, H2WO4 | T of hydrothermal treatment: 95 °C | 7.8 | 1.84 | ||
Ni1Mo0.5W0.5–PC | Direct precipitation | Ni(NO3)3·6H2O, AHM, AMT | T of solution: 90 °C | Precipitation stage > 12 h | 9.9 | 1.80 |
Ni1Mo0.5W0.5–dry | Spray drying | Ni(OH)2, CA, AHM, AMT | T of solution at dissolving stage: 70 °C | 3 h for dissolution | 23.4 | 1.53 |
Catalyst | Ni1Mo0.5W0.5–HT–3 | Ni1Mo0.5W0.5–PC | Ni1Mo0.5W0.5–Dry |
---|---|---|---|
BE of Mo4+3d5/2, eV | 229.0 ± 0.1 | ||
BE of Mo5+3d5/2, eV | 230.4 ± 0.1 | ||
BE of Mo6+3d5/2, eV | 232.7 ± 0.1 | ||
Mo4+, % | 91.4 | 88.8 | 100.0 |
Mo5+, % | 8.6 | 11.2 | 0 |
Mo6+, % | 0 | 0 | 0 |
BE of NiMoWS, eV | 854.0 ± 0.1 | ||
BE of Ni2+, eV | 856.0 ± 0.1 | ||
BE of NiS, eV | 852.8 ± 0.1 | ||
NiMoWS, % | 47.9 | 19.0 | 25.9 |
Ni2+, % | 23.5 | 25.1 | 24.3 |
NiS, Mo, W, % | 28.6 | 55.9 | 49.7 |
BE of W4+4f7/2, eV | 32.5 ± 0.1 | ||
BE of W6+4f7/2, eV | 36.2 ± 0.1 | ||
W4+, % | 69.9 | 68.9 | 85.9 |
W6+, % | 30.1 | 31.1 | 14.1 |
Mo/S | 0.28 | 0.18 | 0.15 |
Ni/S | 0.24 | 0.52 | 0.27 |
W/Mo | 2.34 | 0.61 | 1.04 |
W/Ni | 2.0 | 0.2 | 1.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadeina, K.A.; Budukva, S.V.; Vatutina, Y.V.; Mukhacheva, P.P.; Gerasimov, E.Y.; Pakharukova, V.P.; Prosvirin, I.P.; Larina, T.V.; Klimov, O.V.; Noskov, A.S.; et al. Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst. Inorganics 2023, 11, 89. https://doi.org/10.3390/inorganics11020089
Nadeina KA, Budukva SV, Vatutina YV, Mukhacheva PP, Gerasimov EY, Pakharukova VP, Prosvirin IP, Larina TV, Klimov OV, Noskov AS, et al. Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst. Inorganics. 2023; 11(2):89. https://doi.org/10.3390/inorganics11020089
Chicago/Turabian StyleNadeina, Ksenia A., Sergey V. Budukva, Yuliya V. Vatutina, Polina P. Mukhacheva, Evgeniy Yu. Gerasimov, Vera P. Pakharukova, Igor P. Prosvirin, Tatyana V. Larina, Oleg V. Klimov, Aleksandr S. Noskov, and et al. 2023. "Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst" Inorganics 11, no. 2: 89. https://doi.org/10.3390/inorganics11020089
APA StyleNadeina, K. A., Budukva, S. V., Vatutina, Y. V., Mukhacheva, P. P., Gerasimov, E. Y., Pakharukova, V. P., Prosvirin, I. P., Larina, T. V., Klimov, O. V., Noskov, A. S., & Atuchin, V. V. (2023). Optimal Choice of the Preparation Procedure and Precursor Composition for a Bulk Ni–Mo–W Catalyst. Inorganics, 11(2), 89. https://doi.org/10.3390/inorganics11020089