Electrochemical Performance of Potassium Bromate Active Electrolyte for Laser-Induced KBr-Graphene Supercapacitor Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparations
2.2. Characterizations
3. Results and Discussions
3.1. Raman Characterizations
3.2. HRTEM Analysis
3.3. Electrochemical Characterizations
3.4. Electrochemical Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kularatna, N. Energy Storage Devices for Electronic Systems: Rechargeable Batteries and Supercapacitors; Academic Press: London, UK, 2015. [Google Scholar]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatti, T.S. A Review on Electrochemical Double-Layer Capacitors. Energy Convers. Manag. 2010, 51, 2901–2912. [Google Scholar] [CrossRef]
- Brousse, T.; Bélanger, D.; Long, J.W. To Be or Not To Be Pseudocapacitive. J. Electrochem. Soc. 2015, 162, A5185. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.-L.; Zhao, S.-X.; Chen, C.-K.; Wang, X.; Deng, Y.-F.; Nan, C.-W. A Novel Pseudocapacitance Mechanism of Elm Seed-like Mesoporous MoO3−x Nanosheets as Electrodes for Supercapacitors. J. Mater. Chem. A 2016, 4, 14560–14566. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Forouzandeh, P.; Kumaravel, V.; Pillai, S.C. Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts 2020, 10, 969. [Google Scholar] [CrossRef]
- Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145. [Google Scholar] [CrossRef]
- Ghuge, A.D.; Shirode, A.R.; Kadam, V.J. Graphene: A Comprehensive Review. Curr. Drug Targets 2017, 18, 724–733. [Google Scholar] [CrossRef]
- Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene Based Materials: Past, Present and Future. Prog. Mater. Sci. 2011, 56, 1178–1271. [Google Scholar] [CrossRef]
- Rodríguez-Estupiñán, P.; Miranda-Carvajal, I.; Campos, P.C.; Guerrero-Fajardo, C.A.; Giraldo, L.; Moreno-Piraján, J.C. Graphene-Based Materials: Analysis through Calorimetric Techniques. J. Therm. Anal. Calorim. 2022, 147, 9301–9351. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-Based Smart Materials. Nat. Rev. Mater. 2017, 2, 17046. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Razzaq, S.; Noor, N.A.; Aftab, S.; Afzal, A.; Ullah, H.; Suleman, M.; Elahi, E. Enhancing the Electronic Properties of the Graphene-Based Field-Effect Transistor via Chemical Doping of KBr. J. Mater. Sci. Mater. Electron. 2022, 33, 12416–12425. [Google Scholar] [CrossRef]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene. Acc. Chem. Res. 2018, 51, 1609–1620. [Google Scholar] [CrossRef]
- Khandelwal, M.; Van Tran, C.; Lee, J.; In, J. Bin Nitrogen and Boron Co-Doped Densified Laser-Induced Graphene for Supercapacitor Applications. Chem. Eng. J. 2021, 428, 131119. [Google Scholar] [CrossRef]
- Khandelwal, M.; Van Tran, C.; In, J. Bin Nitrogen and Phosphorous Co-Doped Laser-Induced Graphene: A High-Performance Electrode Material for Supercapacitor Applications. Appl. Surf. Sci. 2022, 576, 151714. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Zhou, C.; Zhou, K.; Yu, J.; Su, Y.; Hu, N.; Zhang, Y. Laser-Induced MoO x/Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir 2021, 37, 1596–1604. [Google Scholar] [CrossRef]
- Peng, Z.; Ye, R.; Mann, J.A.; Zakhidov, D.; Li, Y.; Smalley, P.R.; Lin, J.; Tour, J.M. Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano 2015, 9, 5868–5875. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.V.S.; Sharma, A.K.; Rao, V.V.R.N. Characterization of a Solid State Battery Based on Polyblend of (PVP+PVA+KBrO3) Electrolyte. Ionics. 2004, 10, 142–147. [Google Scholar] [CrossRef]
- Janaki Rami Reddy, T.; Achari, V.B.S.; Sharma, A.K.; Narasimha Rao, V.V.R. Preparation and Electrical Characterization of (PVC+KBrO3) Polymer Electrolytes for Solid State Battery Applications. Ionics 2007, 13, 435–439. [Google Scholar] [CrossRef]
- Fic, K.; Morimoto, S.; Frąckowiak, E.; Ishikawa, M. Redox Activity of Bromides in Carbon-Based Electrochemical Capacitors. Batter. Supercaps 2020, 3, 1080–1090. [Google Scholar] [CrossRef]
- Maher, M.; Hassan, S.; Shoueir, K.; Yousif, B.; Abo-elsoud, M.E.A. Activated Carbon Electrode with Promising Specific Capacitance Based on Potassium Bromide Redox Additive Electrolyte for Supercapacitor Application. J. Mater. Res. Technol. 2021, 11, 1232–1244. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef]
- Mohammed-Ziegler, I.; Hamdi, A.; Abidi, R.; Vincens, J. Complex Formation of Some Tetraamido-Type Calix[]Arene Derivatives Detected by Vibrational Spectroscopy. Supramol. Chem. 2006, 18, 219–234. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Ahmed, F.; Kumar, S.; Melaibari, A.; Hasan, P.M.Z.; Aljaafari, A. Monitoring Food Spoilage Based on a Defect-Induced Multiwall Carbon Nanotube Sensor at Room Temperature: Preventing Food Waste. ACS Omega 2020, 5, 30531–30537. [Google Scholar] [CrossRef]
- Lucchese, M.M.; Stavale, F.; Ferreira, E.H.M.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying Ion-Induced Defects and Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Shaalan, N.M.; Saber, O.; Ahmed, F.; Aljaafari, A.; Kumar, S. Growth of Defect-Induced Carbon Nanotubes for Low-Temperature Fruit Monitoring Sensor. Chemosensors 2021, 9, 131. [Google Scholar] [CrossRef]
- Velasco, A.; Ryu, Y.K.; Boscá, A.; Ladrón-De-Guevara, A.; Hunt, E.; Zuo, J.; Pedrós, J.; Calle, F.; Martinez, J. Recent Trends in Graphene Supercapacitors: From Large Area to Microsupercapacitors. Sustain. Energy Fuels 2021, 5, 1235–1254. [Google Scholar] [CrossRef]
- Bin, J.; Hsia, B.; Yoo, J.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C.P. Facile Fabrication of Flexible All Solid-State Micro-Supercapacitor by Direct Laser Writing of Porous Carbon in Polyimide. Carbon N. Y. 2014, 83, 144–151. [Google Scholar] [CrossRef]
- Liu, C.; Liang, H.; Wu, D.; Lu, X.; Wang, Q. Graphene-Based Supercapacitors: Direct Semiconductor Laser Writing of Few-Layer Graphene Polyhedra Networks for Flexible Solid-State Supercapacitor (Adv. Electron. Mater. 7/2018). Adv. Electron. Mater. 2018, 4, 1870034. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Mo, X.; Law, W.-C.; Chan, K.C. 3D Printed Graphene/Nickel Electrodes for High Areal Capacitance Electrochemical Storage. J. Mater. Chem. A 2019, 7, 4055–4062. [Google Scholar] [CrossRef]
- Zhou, C.; Hong, M.; Yang, Y.; Yang, C.; Hu, N.; Zhang, L.; Yang, Z. Laser-Induced Bi-Metal Sulfide/Graphene Nanoribbon Hybrid Frameworks for High-Performance All-in-One Fiber Supercapacitors. J. Power Sources 2019, 438, 227044. [Google Scholar] [CrossRef]
- Cho, E.; Chang-jian, C.; Syu, W.; Tseng, H.; Lee, K. Applied Surface Science PEDOT-Modi Fi Ed Laser-Scribed Graphene Fi Lms as Bginder and Metallic Current Collector—Free Electrodes for Large-Sized Supercapacitors. Appl. Surf. Sci. 2020, 518, 146193. [Google Scholar] [CrossRef]
- Khandelwal, M.; Nguyen, A.P.; Van Tran, C.; In, J. Bin RSC Advances. RSC Adv. 2021, 11, 38547–38554. [Google Scholar] [CrossRef]
- Tiliakos, A.; Tre, A.M.I.; Tanas, E.; Balan, A.; Stamatin, I. Space-Filling Supercapacitor Carpets: Highly Scalable Fractal Architecture for Energy Storage. J. Power Sources 2018, 384, 145–155. [Google Scholar] [CrossRef]
- Satapathy, D.; Natarajan, G.S. Potassium Bromate Modification of the Granular Activated Carbon and Its Effect on Nickel Adsorption. Adsorption 2006, 12, 147–154. [Google Scholar] [CrossRef]
- Lin, L.P.; Wang, X.X.; Lin, S.Q.; Zhang, L.H.; Lin, C.Q.; Li, Z.M.; Liu, J.M. Research on the Spectral Properties of Luminescent Carbon Dots. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2012, 95, 555–561. [Google Scholar] [CrossRef]
- Li, Q.; Haque, M.; Kuzmenko, V.; Ramani, N.; Lundgren, P.; Smith, A.D.; Enoksson, P. Redox Enhanced Energy Storage in an Aqueous High-Voltage Electrochemical Capacitor with a Potassium Bromide Electrolyte. J. Power Sources 2017, 348, 219–228. [Google Scholar] [CrossRef]
- Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. What Is the Choice for Supercapacitors: Graphene or Graphene Oxide? Energy Environ. Sci. 2011, 4, 2826–2830. [Google Scholar] [CrossRef]
- Xu, K.; Ding, S.P.; Jow, T.R. Toward Reliable Values of Electrochemical Stability Limits for Electrolytes. J. Electrochem. Soc. 1999, 146, 4172–4178. [Google Scholar] [CrossRef]
- Weingarth, D.; Noh, H.; Foelske-Schmitz, A.; Wokaun, A.; Kötz, R. A Reliable Determination Method of Stability Limits for Electrochemical Double Layer Capacitors. Electrochim. Acta 2013, 103, 119–124. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H.; Shu, D.; He, C.; Nan, J. Study on the Electrochemical Behavior of Vanadium Nitride as a Promising Supercapacitor Material. J. Phys. Chem. Solids 2009, 70, 495–500. [Google Scholar] [CrossRef]
- Khan, M.F.; Iqbal, M.Z.; Iqbal, M.W.; Iermolenko, V.M.; Waseem Khalil, H.M.; Nam, J.; Kim, K.S.; Noh, H.; Eom, J. Stable and Reversible Doping of Graphene by Using KNO3 Solution and Photo-Desorption Current Response. RSC Adv. 2015, 5, 50040–50046. [Google Scholar] [CrossRef]
- Sonawane, K.G.; Rajesh, C.; Mahamuni, S. Advanced Nanomaterials and Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 143, ISBN 978-3-642-34215-8. [Google Scholar]
Sample | Peak Position (cm−1) | FWHM | ID/G | I2D/G | ||||
---|---|---|---|---|---|---|---|---|
D | G | 2G | D | G | 2G | |||
LIG | 1358.8 | 1568.7 | 2721.6 | 65.3 | 46.3 | 117.2 | 0.29 | 0.43 |
KBr-LIG | 1365.0 | 1572.0 | 2733.6 | 178.5 | 55.6 | 175.7 | 0.38 | 0.33 |
Active Material | Capacitance | Energy | Power | Electrolyte | Ref. |
---|---|---|---|---|---|
LIG | 800 µFcm−2 at 10 mVs−1 | -- | -- | PVA–H3PO4 | [30] |
LIG | 34.7 mFcm−2 at 0.1 mAcm−2 | 1.0 mWhcm−3 | 11 mWcm−3 | Li-containing gel electrolyte | [31] |
LIG | 995 mFcm−2 at 1 mAcm−2 | 55.9 µWhcm−2 | 9.39 mWcm−2 | 1 M KOH aqueous | [32] |
LIG+ MoS2+MnS | 58.3 mFm−2 at 50 mAcm−2 | 7 µWhcm−2 | 49.9 µWcm−2 | PVA/Na2SO4 | [33] |
LIG+PEDOT | 115.2 Fg−1 at 0.5 Ag−1 | -- | -- | 1.0 M H2SO4 | [34] |
NiO/Co3O4/LIG | 29.5 mFcm−2 at 0.05 mAcm−2 | -- | -- | PVA–H3PO4 | [35] |
LIG | 6.1 mFcm−2 at 20 mVs−1 | 0.96 µWhcm−2 | 0.25 mWcm−2 | PVA–H3PO4 | [36] |
LIG | 33 Fg−1 at 5 mVs−1 | 1.5 WhKg−1 at 0.25 Ag−1 | 43.3 Wkg−1 at 0.25 Ag−1to 521 Wkg−1 at 3.0 Ag−1 | 0.2 M KBrO3 | Present work |
KBr-LIG | 60 Fg−1 at 5 mVs−1 | 2.1 WhKg−1 at 0.25 Ag−1 | |||
KBr-LIG | 70 Fg−1 at 5 mVs−1 | 3.4 WhKg−1 at 0.25 Ag−1 | 0.4 M KBrO3 |
Sample | Rs (Ω) | Rct (Ω) | Wo-R (Ω) |
---|---|---|---|
[email protected] | 10 | 18 | 17 |
[email protected] | 8 | 18 | 17 |
[email protected] | 6.5 | 9 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaalan, N.M.; Ahmed, F.; Kumar, S.; Ahmad, M.M.; Al-Naim, A.F.; Hamad, D. Electrochemical Performance of Potassium Bromate Active Electrolyte for Laser-Induced KBr-Graphene Supercapacitor Electrodes. Inorganics 2023, 11, 109. https://doi.org/10.3390/inorganics11030109
Shaalan NM, Ahmed F, Kumar S, Ahmad MM, Al-Naim AF, Hamad D. Electrochemical Performance of Potassium Bromate Active Electrolyte for Laser-Induced KBr-Graphene Supercapacitor Electrodes. Inorganics. 2023; 11(3):109. https://doi.org/10.3390/inorganics11030109
Chicago/Turabian StyleShaalan, Nagih M., Faheem Ahmed, Shalendra Kumar, Mohamad M. Ahmad, Abdullah F. Al-Naim, and D. Hamad. 2023. "Electrochemical Performance of Potassium Bromate Active Electrolyte for Laser-Induced KBr-Graphene Supercapacitor Electrodes" Inorganics 11, no. 3: 109. https://doi.org/10.3390/inorganics11030109
APA StyleShaalan, N. M., Ahmed, F., Kumar, S., Ahmad, M. M., Al-Naim, A. F., & Hamad, D. (2023). Electrochemical Performance of Potassium Bromate Active Electrolyte for Laser-Induced KBr-Graphene Supercapacitor Electrodes. Inorganics, 11(3), 109. https://doi.org/10.3390/inorganics11030109