Effectiveness of Artificially Synthesized Granitic Residual Soil-Supported Nano Zero-Valent Iron (Gr-nZVI) as Effective Heavy Metal Contaminant Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of nZVI and Gr-nZVI Nanocomposites
2.3. Characterization of the Adsorbents
2.4. Adsorption Study
2.4.1. Batch Equilibrium Test
2.4.2. Adsorption Isotherm
2.4.3. Adsorption Kinetics
3. Results and Discussion
3.1. Material Characterization
3.2. Batch Equilibrium Test
3.2.1. Effect of the Adsorbent Dosage
3.2.2. Effect of Initial Concentration
3.2.3. Effect of Contact Time
3.2.4. Effect of pH
3.2.5. Effect of Temperature
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Adeleke, A.R.O.; Latiff, A.A.A.; Daud, Z.; Mat Daud, N.F.; Aliyu, M.K. Heavy metal removal from wastewater of palm oil mill using developed activated carbon from coconut shell and cow bones. Key Eng. Mater. 2017, 737, 428–432. [Google Scholar] [CrossRef]
- Adeleke, A.R.O.; Latiff, A.A.A.; Daud, Z. Adsorption of pollutants from palm oil mill effluent using natural adsorbents: Optimization and isotherm studies. Desalination Water Treat. 2019, 169, 181–190. [Google Scholar] [CrossRef]
- Rosli, M.A.; Daud, Z.; Ridzuan, M.B.; Abd Aziz, N.A.; Awang, H.; Adeleke, A.R.O.; Hossain, K.; Ismail, N. Equilibrium isotherm and kinetic study of the adsorption of organic pollutants of leachate by using micro peat-activated carbon composite media. Desalination Water Treat. 2019, 160, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Jain, B.; Gade, J.V.; Hadap, A.; Ali, H.; Katubi, K.M.; Sasikumar, B.; Rawat, R. A Facile Synthesis and Properties of Graphene Oxide-Titanium Dioxide-Iron Oxide as Fenton Catalyst. Adsorpt. Sci. Technol. 2022, 2022, 2598536. [Google Scholar] [CrossRef]
- Sombra dos Santos, F.; Lago, F.R.; Yokoyama, L.; Fonseca, F.V. Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol. 2016, 6, 178–183. [Google Scholar] [CrossRef]
- Mpongwana, N.; Rathilal, S. A Review of the Techno-Economic Feasibility of Nanoparticle Application for Wastewater Treatment. Water 2022, 14, 1550. [Google Scholar] [CrossRef]
- Vallinayagam, S.; Rajendran, K.; Lakkaboyana, S.K.; Soontrapa, K.; Remya, R.R.; Sharma, V.P.; Kumar, V.; Venkateswarlu, K.; Koduru, J.R. Recent developments in magnetic nanoparticles and nano-composites for wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 106553. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, W.; Zhao, Y.; Bai, H.; Wen, T.; Kang, S.; Song, G.; Song, S.; Komarneni, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2021, 420, 127574. [Google Scholar] [CrossRef]
- Liu, G.; Liao, L.; Dai, Z.; Qi, Q.; Wu, J.; Ma, L.Q.; Tang, C.; Xu, J. Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions. Chem. Eng. J. 2020, 395, 125108. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, C.; Lu, X.; Luo, F.; Wang, C.; Alsaedi, A.; Hayat, T. Porous NiFe-oxide nanocubes derived from prussian blue analogue as efficient adsorbents for the removal of toxic metal ions and organic dyes. J. Hazard. Mater. 2019, 379, 120786. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, N.; Liu, Y.; Zhu, J.; Feng, J.; Yan, W. Synergetic effect in a self-doping polyaniline/TiO2 composite for selective adsorption of heavy metal ions. Synth. Met. 2018, 245, 32–41. [Google Scholar] [CrossRef]
- Pei, X.; Gan, L.; Tong, Z.; Gao, H.; Meng, S.; Zhang, W.; Wang, P.; Chen, Y. Robust cellulose-based composite adsorption membrane for heavy metal removal. J. Hazard. Mater. 2021, 406, 124746. [Google Scholar] [CrossRef]
- Intan Febriani, L.; Nurhashiva, C.; Veronica, J.; Ragadhita, R.; Bayu Dani Nandiyanto, A.; Kurniawan, T. Computation Application: Techno-Economic Analysis on the Production of Magnesium Oxide Nanoparticles by Precipitation Method. Int. J. Inform. Inf. Syst. Comput. Eng. 2020, 1, 117–128. [Google Scholar] [CrossRef]
- Costa, J.E.B.; Barbosa, A.S.; Melo, M.A.F.; Melo, D.M.A.; Medeiros, R.L.B.A.; Braga, R.M. Renewable aromatics through catalytic pyrolysis of coconut fiber (Cocos nucífera Linn.) using low cost HZSM-5. Renew. Energy 2022, 191, 439–446. [Google Scholar] [CrossRef]
- Rashmi, S.; Madhu, G.; Kittur, A.; Suresh, R. Synthesis, characterization and application of zero valent iron nanoparticles for the removal of toxic metal hexavalent chromium from aqueous solution. Int. J. Curr. Eng. Technol. 2013, 1, 37–42. [Google Scholar]
- Roy, W.; Krapac, I.; Chou, S.; Griffin, R. Batch-Type Procedures for Estimating Soil Adsorption of Chemicals. EPA/530/SW-87/006-F; United States Environmental Protection Agency: Washington, DC, USA, 1992. [Google Scholar]
- Sharma, G.; Sharma, S.; Kumar, A.; Wei Lai, C.; Naushad, M.; Shehnaz; Iqbal, J.; Stadler, F.J. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorpt. Sci. Technol. 2022, 2022, 4184809. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Understanding Variation in Partition Coefficient, Kd Values. Environ. Prot. 1999, 1, 1–6.23. [Google Scholar]
- Alther, G. Using organoclays to enhance carbon filtration. Waste Manag. 2002, 22, 507–513. [Google Scholar] [CrossRef]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; Issa, A.A.; Khraisheh, M.A.; Walker, G.M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Res. 2006, 40, 2645–2658. [Google Scholar] [CrossRef]
- Daley, M.A.; Tandon, D.; Economy, J.; Hippo, E.J. Elucidating the porous structure of activated carbon fibers using direct and indirect methods. Carbon 1996, 34, 1191–1200. [Google Scholar] [CrossRef]
- Fitriatin, B.N.; Arifin, M.; Devnita, R.; Yuniarti, A.; Haryanto, R.; Setiabudi, M.A. P retention and cation exchange as affected by nanoparticle of volcanic ash and application of phosphate solubilizing bacteria on Andisol Ciater, West Java, Indonesia. AIP Conf. Proc. 2018, 1927, 30025. [Google Scholar] [CrossRef] [Green Version]
- Zarime, N.A.; Yaacob, W.Z.W. Pergerakan Kadmium (Cd) melalui Tanah Baki Granit Terpadat Menggunakan Kaedah Kolum Turasan Mini. Sains Malays. 2016, 45, 1905–1912. [Google Scholar] [CrossRef]
- Tomašić, M.; Žgorelec, Ţ.; Jurišić, A.; Kisić, I. Cation exchange capacity of dominant soil types in the Republic of Croatia. J. Cent. Eur. Agric. 2013, 14, 84–98. [Google Scholar] [CrossRef] [Green Version]
- Zarime, N.A.; Yaacob, W.Z.W.; Jamil, H. Removal of Acid Orange II Dye By Granitic Nano-Zero Valent Iron (nZVI) Composite. Int. J. GEOMATE 2019, 16, 185–192. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Mohammed, A.K.; Shuaib, D.T. Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon 2019, 5, 02923. [Google Scholar] [CrossRef]
- Yahaya, S.; Jikan, S.S.; Badarulzaman, N.A.; Adamu, A.D. Effects of Acid Treatment on the SEM-EDX Characteristics of Kaolin Clay. Path Sci. 2017, 3, 4001–4005. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, X.; Chen, Z.L. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 2011, 45, 886–892. [Google Scholar] [CrossRef]
- Kerkez, D.V.; Tomašević, D.D.; Kozma, G.; Bečelić-Tomin, M.R.; Prica, M.D.; Rončević, S.D.; Kukovecz, Á.; Dalmacija, B.D.; Kónya, Z. Three different clay-supported nanoscale zero-valent iron materials for industrial azo dye degradation: A comparative study. J. Taiwan Inst. Chem. Eng. 2014, 45, 2451–2461. [Google Scholar] [CrossRef]
- Chen, J.; Anandarajah, A.; Inyang, H. Pore Fluid Properties and Compressibility of Kaolinite. J. Geotech. Geoenviron. Eng. 2000, 126, 798–807. [Google Scholar] [CrossRef]
- Coles, C.A.; Yong, R.N. Aspects of kaolinite characterization and retention of Pb and Cd. Appl. Clay Sci. 2002, 22, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Liu, G.; Zhou, C.; Li, T.; Liu, J. Synthesis, characterization and aging study of kaolinite-supported zero-valent iron nanoparticles and its application for Ni(II) adsorption. Mater. Res. Bull. 2014, 60, 421–432. [Google Scholar] [CrossRef]
- Sun, Y.P.; Li, X.; Cao, J.; Zhang, W.; Wang, H.P. Characterization of zero-valent iron nanoparticles. Adv. Colloid Interface Sci. 2006, 120, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ang, B.C.; Yaacob, I.I.; Nurdin, I. Investigation of Fe2O3/SiO2 nanocomposite by FESEM and TEM. J. Nanomater. 2013, 2013, 980390. [Google Scholar] [CrossRef] [Green Version]
- Vijayaragavan, R.; Mullainathan, S.; Balachandramohan, M.; Krishnamoorthy, N.; Nithiyanantham, S.; Murugesan, S.; Vanathi, V. Mineralogical Characterization Studies on Unburnt Ceramic Product Made from Rock Residue Additives by Ft-Ir Spectroscopic Technique. Int. J. Mod. Phys. Conf. Ser. 2013, 22, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Keeling, P.S. The wollastonite deposit at Lappeenranta (Willmanstrand), S.E. Finland. Trans. Br. Ceram. Soc. 1963, 62, 877–894. [Google Scholar]
- D’Souza, L.; Devi, P.; Divya Shridhar, M.P.; Naik, C.G. Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-induced changes in Padina tetrastromatica (Hauck). Anal. Chem. Insights 2008, 2008, 135–143. [Google Scholar] [CrossRef]
- Garcí, E.R.; Medina, R.L.; Lozano, M.M.; Pérez, I.H.; Valero, M.J.; Franco, A.M.M. Adsorption of Azo-Dye Orange II from Aqueous Solutions Using a Metal-Organic Framework Material: Iron- Benzenetricarboxylate. Materials 2014, 7, 8037–8057. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Misra, V.; Singh, R.P. Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J. Nanoparticle Res. 2011, 13, 4063–4073. [Google Scholar] [CrossRef]
- El-Shafei, M.M.; Hamdy, A.; Hefny, M.M. Zero-valent iron nanostructures: Synthesis, characterization and application. J. Environ. Biotechnol. 2018, 7, 1–10. [Google Scholar]
- Chi, Z.; Wang, Z.; Liu, Y.; Yang, G. Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater. Chem. Eng. J. 2017, 331, 317–325. [Google Scholar] [CrossRef]
- Oliveira, F.; Abreu, S.; Alves, N.; Sipauba, M.D.S.; Madalena, M.; Forte, D.C. Chitosan and gum arabic nanoparticles for heavy metal adsorption. Polímeros 2018, 5169, 231–238. [Google Scholar]
- Carballo, T.; Gil, M.V.; Go´mez, X.; Gonza´lez-Andre´s, F.; Mora’n, A. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation 2008, 19, 815–830. [Google Scholar] [CrossRef]
- Lakkaboyana, S.K.; Khantong, S.; Asmel, N.K.; Obaidullah, S.; Kumar, V.; Kannan, K.; Venkateswarlu, K.; Yuzir, A.; Yaacob, W.Z.W. Indonesian Kaolin supported nZVI (IK-nZVI) used for the an efficient removal of Pb(II) from aqueous solutions: Kinetics, thermodynamics and mechanism. J. Environ. Chem. Eng. 2021, 9, 106483. [Google Scholar] [CrossRef]
- Akkaya, G.; Güzel, F. Optimization of Copper and Lead Removal by a Novel Biosorbent: Cucumber (Cucumis Sativus) Peels-Kinetic, Equilibrium, and Desorption Studies. J. Dispers. Sci. Technol. 2013, 34, 1295–1307. [Google Scholar] [CrossRef]
- Yaacob, W.Z.W.; Samsuddin, A.R. Sorption Parameters of Pb and Cu on Natural Clay Soils from Selangor, Malaysia. Sains Malays. 2007, 36, 149–157. [Google Scholar]
- Chikri, R.; Elhadiri, N.; Benchanaa, M.; El Maguana, Y. Efficiency of Sawdust as Low-Cost Adsorbent for Dyes Removal. J. Chem. 2020, 2020, 8813420. [Google Scholar] [CrossRef]
- Veli, S.; Alyüz, B. Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 2007, 149, 226–233. [Google Scholar] [CrossRef]
- Tang, H.; Zhou, W.; Zhang, L. Adsorption isotherms and kinetics studies of malachite green on chitin hydrogels. J. Hazard. Mater. 2012, 209–210, 218–225. [Google Scholar] [CrossRef]
- Vandenbruwane, J.; De Neve, S.; Qualls, R.G.; Sleutel, S.; Hofman, G. Comparison of different isotherm models for dissolved organic carbon (DOC) and nitrogen (DON) sorption to mineral soil. Geoderma 2007, 139, 144–153. [Google Scholar] [CrossRef]
- Nodvin, S.C.; Driscoll, C.T.; Likens, G.E. Simple partitioning of anions and dissolved organic carbon in a forest soil. Soil Sci. 1986, 142, 27–35. [Google Scholar] [CrossRef]
- Kolluru, S.S.; Agarwal, S.; Sireesha, S.; Sreedhar, I.; Kale, S.R. Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Saf. Environ. Prot. 2021, 150, 323–355. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Lazaridis, N.K.; Kostoglou, M. Adsorption/desorption of a dye by a chitosan derivative: Experiments and phenomenological modeling. Chem. Eng. J. 2014, 248, 327–336. [Google Scholar] [CrossRef]
- Alemayehu, E.; Lennartz, B. Virgin volcanic rocks: Kinetics and equilibrium studies for the adsorption of cadmium from water. J. Hazard. Mater. 2009, 169, 395–401. [Google Scholar] [CrossRef]
- Kakavandi, B.; Kalantary, R.R.; Farzadkia, M.; Mahvi, A.H.; Esrafili, A.; Azari, A.; Yari, A.R.; Javid, A.B. Enhanced chromium (VI) removal using activated carbon modified by zero valent iron and silver bimetallic nanoparticles. J. Environ. Health Sci. Eng. 2014, 12, 115. [Google Scholar] [CrossRef] [Green Version]
- Shaibu, S.E.; Adekola, F.A.; Adegoke, H.I.; Ayanda, O.S. A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites. Materials 2014, 7, 4493–4507. [Google Scholar] [CrossRef] [Green Version]
- Abdel Salam, M.; Abukhadra, M.R.; Adlii, A. Insight into the Adsorption and Photocatalytic Behaviors of an Organo-Bentonite/Co3O4 Green Nanocomposite for Malachite Green Synthetic Dye and Cr(VI) Metal Ions: Application and Mechanisms. ACS Omega 2020, 5, 2766–2778. [Google Scholar] [CrossRef] [Green Version]
- Mirzaee, S.A.; Jaafarzadeh, N.; Martinez, S.S.; Noorimotlagh, Z. Simultaneous adsorption of heavy metals from aqueous matrices by nanocomposites: A first systematic review of the evidence. Environ. Health Eng. Manag. 2022, 9, 9–14. [Google Scholar] [CrossRef]
- Pan, M.; Lin, X.; Xie, J.; Huang, X. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC Adv. 2017, 7, 4492–4500. [Google Scholar] [CrossRef] [Green Version]
- Mezenner, N.Y.; Bensmaili, A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem. Eng. J. 2009, 147, 87–96. [Google Scholar] [CrossRef]
- Shahwan, T.; Abu Sirriah, S.; Nairat, M.; Boyaci, E.; Eroğlu, A.E.; Scott, T.B.; Hallam, K.R. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 2011, 172, 258–266. [Google Scholar] [CrossRef]
- Lutfor Rahman, A.K.M.; Al Mamun, R.; Ahmed, N.; Sarkar, A.; Sarkar, A.M. Removal of toxic Congo red dye using water hyacinth petiole, an efficient and selective adsorbent. J. Chem. Soc. Pak. 2019, 41, 825–833. [Google Scholar]
- Cheng, C.; Wang, J.; Yang, X.; Li, A.; Philippe, C. Adsorption of Ni (II) and Cd (II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. J. Hazard. Mater. 2014, 264, 332–341. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y.; Valero, J.R. Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein J. Nanotechnol. 2015, 6, 2354–2376. [Google Scholar] [CrossRef] [Green Version]
- Xia, B.; He, F.; Li, L. Preparation of Bimetallic Nanoparticles Using a Facile Green Synthesis Method and Their Application. Langmuir 2013, 23, 4901–4907. [Google Scholar] [CrossRef]
- Al-Qodah, Z. Adsorption of dyes using shale oil ash. Water Res. 2000, 34, 4295–4303. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarime, N.‘A.; Solemon, B.; Wan Yaacob, W.Z.; Jamil, H.; Che Omar, R.; Oyekanmi, A.A. Effectiveness of Artificially Synthesized Granitic Residual Soil-Supported Nano Zero-Valent Iron (Gr-nZVI) as Effective Heavy Metal Contaminant Adsorbent. Inorganics 2023, 11, 131. https://doi.org/10.3390/inorganics11030131
Zarime N‘A, Solemon B, Wan Yaacob WZ, Jamil H, Che Omar R, Oyekanmi AA. Effectiveness of Artificially Synthesized Granitic Residual Soil-Supported Nano Zero-Valent Iron (Gr-nZVI) as Effective Heavy Metal Contaminant Adsorbent. Inorganics. 2023; 11(3):131. https://doi.org/10.3390/inorganics11030131
Chicago/Turabian StyleZarime, Nur ‘Aishah, Badariah Solemon, Wan Zuhairi Wan Yaacob, Habibah Jamil, Rohayu Che Omar, and Adeleke Abdulrahman Oyekanmi. 2023. "Effectiveness of Artificially Synthesized Granitic Residual Soil-Supported Nano Zero-Valent Iron (Gr-nZVI) as Effective Heavy Metal Contaminant Adsorbent" Inorganics 11, no. 3: 131. https://doi.org/10.3390/inorganics11030131
APA StyleZarime, N. ‘A., Solemon, B., Wan Yaacob, W. Z., Jamil, H., Che Omar, R., & Oyekanmi, A. A. (2023). Effectiveness of Artificially Synthesized Granitic Residual Soil-Supported Nano Zero-Valent Iron (Gr-nZVI) as Effective Heavy Metal Contaminant Adsorbent. Inorganics, 11(3), 131. https://doi.org/10.3390/inorganics11030131