Pressure-Induced Reversible Local Structural Disorder in Superconducting AuAgTe4
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Phonon Spectra
2.2. Temperature Dependence of the Phonons
2.3. Continuum
2.4. Low-Pressure Measurements
2.5. Phonon Density of States Observed at High Pressure Range
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shackleton, J.M.; Spry, P.G.; Bateman, R. Telluride mineralogy of the golden mile deposit, Kalgoorlie, Western Australia. Can. Mineral. 2003, 41, 1503–1524. [Google Scholar] [CrossRef] [Green Version]
- Ewald, P.P.; Friedrich, W. Röntgenaufnahmen von kubischen Kristallen, insbesondere Pyrit. Ann. Der Phys. 1914, 349, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Tokuda, M.; Yoshiasa, A.; Mashimo, T.; Arima, H.; Hongu, H.; Tobase, T.; Sugiyama, K. Crystal structure refinement of MnTe2, MnSe2, and MnS2: Cation-anion and anion–anion bonding distances in pyrite-type structures. Z. FüR-Krist.-Cryst. Mater. 2019, 234, 371–377. [Google Scholar] [CrossRef]
- Kitahara, G.; Yoshiasa, A.; Tokuda, M.; Nespolo, M.; Hongu, H.; Momma, K.; Sugiyama, K. Crystal structure, XANES and charge distribution investigation of krennerite and sylvanite: Analysis of Au–Te and Te–Te bonds in Au1-xAgxTe2 group minerals. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2022, B78, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Dam, B.; Janner, A.; Donnay, J.D.H. Incommensurate Morphology of Calaverite (AuTe2) Crystals. Phys. Rev. Lett. 1985, 55, 2301–2304. [Google Scholar] [CrossRef] [PubMed]
- Streltsov, S.V.; Roizen, V.V.; Ushakov, A.V.; Oganov, A.R.; Khomskii, D.I. Old puzzle of incommen-surate crystal structure of calaverite AuTe2 and predicted stability of novel AuTe compound. Proc. Natl. Acad. Sci. USA 2018, 115, 9945–9950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitagawa, S.; Kotegawa, H.; Tou, H.; Ishii, H.; Kudo, K.; Nohara, M.; Harima, H. Pressure-induced super-conductivity in mineral calaverite AuTe2. J. Phys. Soc. Jpn. 2013, 82, 113704. [Google Scholar] [CrossRef] [Green Version]
- Kudo, K.; Ishii, H.; Takasuga, M.; Iba, K.; Nakano, S.; Kim, J.; Nohara, M. Superconductivity induced by breaking Te2 dimers of AuTe2. J. Phys. Soc. Jpn. 2013, 82, 063704. [Google Scholar] [CrossRef] [Green Version]
- Ootsuki, D.; Takubo, K.; Kudo, K.; Ishii, H.; Nohara, M.; Saini, N.L.; Mizokawa, T. Effect of Pt substitution on the electronic structure of AuTe2. Phys. Rev. B 2014, 90, 144515. [Google Scholar] [CrossRef] [Green Version]
- Reithmayer, K.; Steurer, W.; Schulz, H.; De Boer, J.L. High-pressure single-crystal structure study on ca-laverite, AuTe2. Acta Crystallogr. Sect. B Struct. Sci. 1993, B49, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Nespolo, M. The ash heap of crystallography: Restoring forgotten basic knowledge. J. Appl. Crystallogr. 2015, 48, 1290–1298. [Google Scholar] [CrossRef] [Green Version]
- Tunnell, G.; Pauling, L. The atomic arrangement and bonds of the gold–silver ditellurides. Acta Crystallogr. 1952, 5, 375–381. [Google Scholar] [CrossRef]
- Tunell, G. The atomic arrangement of sylvanite. Am. Mineral. J. Earth Planet. Mater. 1941, 26, 457–477. [Google Scholar]
- Ushakov, A.V.; Streltsov, S.V.; Khomskii, D.I. Structural transition in AuAgTe4 under pressure. J. Phys. Condens. Matter 2019, 31, 235601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amiel, Y.; Kafle, G.P.; Komleva, E.V.; Greenberg, E.; Ponosov, Y.S.; Chariton, S.; Lavina, B.; Zhang, D.; Palevski, A.; Ushakov, A.V.; et al. Silvanite AuAgTe4: A rare case of gold superconducting material. arXiv 2023, arXiv:2301.08033. [Google Scholar]
- Klemens, P.G. Anharmonic Decay of Optical Phonons. Phys. Rev. 1966, 148, 845. [Google Scholar] [CrossRef]
- Balkanski, M.; Wallis, R.F.; Haro, E. Anharmonic effects in light scattering due to optical phonons in silicon. Phys. Rev. B 1983, 28, 1928. [Google Scholar] [CrossRef]
- Zawadowski, A.; Cardona, M. Theory of Raman scattering on normal metals with impurities. Phys. Rev. B 1990, 42, 10732. [Google Scholar] [CrossRef]
- Ipatova, I.P.; Kaganov, M.I.; Subashiev, A.V. Scattering of light by electrons of metals and semimetals with complex Fermi surfaces. Zh. Eksp. Teor. Fiz. 1983, 84, 1830. [Google Scholar]
- Ponosov, Y.S.; Streltsov, S.V. Measurements of Raman scattering by electrons in metals: The effects of electron-phonon coupling. Phys. Rev. B 2012, 86, 045138. [Google Scholar] [CrossRef] [Green Version]
- Shulga, S.V.; Dolgov, O.V.; Maksimov, E.G. Electronic states and optical spectra of HTSC with elec-tron-phonon coupling. Phys. C Supercond. 1991, 178, 266–274. [Google Scholar] [CrossRef]
- Brodsky, M.H. Light Scattering in Solids: Raman Scattering in Amorphous Semiconductors; Springer: Berlin/Heidelberg, Germany, 1981; p. 205. [Google Scholar]
- Shuker, R.; Gammon, R.W. Low-Frequency Vibrational Light Scattering in Viscous Liquids. J. Chem. Phys. 1971, 55, 4784. [Google Scholar] [CrossRef]
- Richet, P. (Ed.) Encyclopedia of Glass Science, Technology, History, and Culture; John Wiley & Sons.: Hoboken, NJ, USA, 2021; p. 1568. [Google Scholar]
- Dai, L.; Zhuang, Y.; Li, H.; Wu, L.; Hu, H.; Liu, K.; Pu, C. Pressure-induced irreversible amorphization and metallization with a structural phase transition in arsenic telluride. J. Mater. Chem. C 2017, 5, 12157. [Google Scholar] [CrossRef]
- Zhuang, Y.; Dai, L.; Li, H.; Hu, H.; Liu, K.; Yang, L.; Hong, M. Pressure-induced reversible metallization and phase transition in Zinc Telluride. Mod. Phys. Lett. B 2018, 32, 1850342. [Google Scholar] [CrossRef]
- Kruger, M.B.; Jeanloz, R. Memory glass: An amorphous material formed from AlPO4. Science 1990, 249, 647. [Google Scholar] [CrossRef]
- Gillet, P.; Badro, J.; Varrel, B.; McMillan, P.F. High-pressure behavior in α-AlPO4: Amorphiza-tion and the memory-glass effect. Phys. Rev. B 1995, 51, 11262. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Density functional theory (DFT). Phys. Rev. B 1964, 136, B864. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector augmented wave method. Phys. Rev. B 1994, 50, 953. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 1998, 80, 891. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, R5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symmetry | Theory | Experiment |
---|---|---|
B | 46 | 50 |
A | 50 | 47 |
B | 56 | 58 |
B | 58 | 84 |
A | 62 | 61 |
B | 89 | 88 |
A | 91 | 95 |
A | 96 | 102 |
B | 105 | 114 |
A | 110 | 121 |
A | 125 | 132 |
B | 125 | - |
B | 127 | 134 |
A | 144 | 158 |
B | 160 | 147 |
Fit Parameters | A | A | A |
---|---|---|---|
(0) [cm] | 47.9 | 125.5 | 163 |
(0) [cm] | 1 | 1 | 1 |
C | 0.0025 | 0.02 | 0.0018 |
D | 0.0014 | 0.0018 | 0.022 |
Symmetry | Theory | Experiment |
---|---|---|
B | 38 | 51 |
A | 66 | 73 |
A | 86 | 114 |
A | 124 | 121 |
B | 149 | 163 |
A | 162 | 140 |
- | - | 102 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamyatin, D.A.; Pankrushina, E.A.; Streltsov, S.V.; Ponosov, Y.S. Pressure-Induced Reversible Local Structural Disorder in Superconducting AuAgTe4. Inorganics 2023, 11, 99. https://doi.org/10.3390/inorganics11030099
Zamyatin DA, Pankrushina EA, Streltsov SV, Ponosov YS. Pressure-Induced Reversible Local Structural Disorder in Superconducting AuAgTe4. Inorganics. 2023; 11(3):99. https://doi.org/10.3390/inorganics11030099
Chicago/Turabian StyleZamyatin, Dmitry A., Elizaveta A. Pankrushina, Sergey V. Streltsov, and Yuri S. Ponosov. 2023. "Pressure-Induced Reversible Local Structural Disorder in Superconducting AuAgTe4" Inorganics 11, no. 3: 99. https://doi.org/10.3390/inorganics11030099
APA StyleZamyatin, D. A., Pankrushina, E. A., Streltsov, S. V., & Ponosov, Y. S. (2023). Pressure-Induced Reversible Local Structural Disorder in Superconducting AuAgTe4. Inorganics, 11(3), 99. https://doi.org/10.3390/inorganics11030099