Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices
Abstract
:1. Introduction
2. Energy Storage Devices
2.1. Types of Energy Storage Systems
2.2. Batteries for Energy Storage
2.3. Supercapacitors for Energy Storage
3. Hybrid Nanostructured Materials in Energy Storage Devices
3.1. Applications of Hybrid Nanostructured Materials as Electrodes in Batteries and Supercapacitors
3.1.1. Carbon-Based Electrodes
3.1.2. Metal–Organic Framework (MOF) Electrodes
3.1.3. Halide Perovskite Electrodes
3.1.4. Transition Metal Oxide and Its Nanosheets as Electrodes
3.1.5. Conducting Polymer Electrodes
4. Hybrid Energy Storage Device (HESD)
5. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muzayanah, I.F.U.; Lean, H.H.; Hartono, D.; Indraswari, K.D.; Partama, R. Population density and energy consumption: A study in Indonesian provinces. Heliyon 2022, 8, e10634. [Google Scholar] [CrossRef]
- British Petroleum Co. BP Statistical Review of World Energy 2022; British Petroleum Co.: London, UK, 2022. [Google Scholar]
- Sönnichsen, N. Primary Energy Consumption Worldwide from 2000 to 2021. 2022. Available online: https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide/ (accessed on 10 October 2022).
- Chen, G.Z. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog. Nat. Sci. 2013, 23, 245–255. [Google Scholar] [CrossRef]
- International Energy Agency. Technology Roadmap–Energy Storage. 2014. Available online: https://www.iea.org/reports/technology-roadmap-energy-storage (accessed on 12 June 2022).
- Yao, L.; Yang, B.; Cui, H.; Zhuang, J.; Ye, J.; Xue, J. Challenges and progresses of energy storage technology and its application in power systems. J. Mod. Power Syst. Clean Energy 2016, 4, 519–528. [Google Scholar] [CrossRef]
- Baker, J. New technology and possible advances in energy storage. Energy Policy 2008, 36, 4368–4373. [Google Scholar] [CrossRef]
- San Martín, J.I.; Zamora, I.; San Martín, J.J.; Aperribay, V.; Eguía, P. Energy storage technologies for electric applications. In International Conference on Renewable Energies and Power Quality (ICREPQ′11); European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ): Vigo, Spain, 2011. [Google Scholar]
- Pearre, N.S.; Swan, L.G. Technoeconomic feasibility of grid storage: Mapping electrical services and energy storage technologies. Appl. Energy 2015, 137, 501–510. [Google Scholar] [CrossRef]
- Fauvel, C.; Claveau, F.; Chevrel, P.; Fiani, P. A flexible design methodology to solve energy management problems. Int. J. Electr. Power Energy Syst. 2018, 97, 220–232. [Google Scholar] [CrossRef]
- Rao, B.M.L.; Francis, R.W.; Christopher, H.A. Lithium-aluminum electrode. J. Electrochem. Soc. 1977, 124, 1490–1492. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Abraham, K.M. Prospects and limits of energy storage in batteries. J. Phys. Chem. Lett. 2015, 6, 830–844. [Google Scholar] [CrossRef] [PubMed]
- Sovacool, B.K.; Del Rio, D.D.F. Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renew. Sustain. Energy Rev. 2020, 120, 109663. [Google Scholar] [CrossRef]
- Poonam; Sharma, K.; Arora, A.; Tripathi, S.K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825. [Google Scholar] [CrossRef]
- Afif, A.; Rahman, S.M.H.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced Materials and Technologies for Hybrid Supercapacitors for Energy Storage–A Review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte Selection for Supercapacitive Devices: A Critical Review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Z.; Zhang, D.; Miao, Z.-C.; Zhang, X.-L.; Chou, S.-L. Research Progress in MnO2–Carbon Based Supercapacitor Electrode Materials. Small 2018, 14, 1702883. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Chen, G.Z. Redox Electrode Materials for Supercapatteries. J. Power Sources 2016, 326, 604–612. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.-H.; Gomez-Romero, P. Towards Flexible Solid-State Supercapacitors for Smart and Wearable Electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef]
- Park, J.; Hwang, J.C.; Kim, G.G.; Park, J. Flexible Electronics Based on One-dimensional and Two-dimensional Hybrid Nanomaterials. InfoMat 2020, 2, 33–56. [Google Scholar] [CrossRef]
- Lin, Y.; Gao, Y.; Fan, Z. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design. Adv. Mater. 2017, 29, 1701736. [Google Scholar] [CrossRef]
- Kerns, J. What’s the Difference between Batteries and Capacitors? Available online: https://www.machinedesign.com/automation-iiot/batteries-power-supplies/article/21831866/whats-the-difference-between-batteries-and-capacitors (accessed on 12 July 2022).
- Tan, C.; Chen, J.; Wu, X.-J.; Zhang, H. Epitaxial Growth of Hybrid Nanostructures. Nat. Rev. Mater. 2018, 3, 17089. [Google Scholar] [CrossRef]
- Riaz, A.; Sarker, M.R.; Saad, M.H.M.; Mohamed, R. Review on Comparison of Different Energy Storage Technologies Used in Micro-Energy Harvesting, WSNs, Low-Cost Microelectronic Devices: Challenges and Recommendations. Sensors 2021, 21, 5041. [Google Scholar] [CrossRef]
- Shao, Y.; El-Kady, M.F.; Sun, J.; Li, Y.; Zhang, Q.; Zhu, M.; Wang, H.; Dunn, B.; Kaner, R.B. Design and Mechanisms of Asymmetric Supercapacitors. Chem. Rev. 2018, 118, 9233–9280. [Google Scholar] [CrossRef] [PubMed]
- Ananikov, V.P. Organic–Inorganic Hybrid Nanomaterials. Nanomaterials 2019, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Han, M. Functionalized Hybridization of 2D Nanomaterials. Adv. Sci. 2019, 6, 1901837. [Google Scholar] [CrossRef]
- Srivatsan, T.S. A Review of: “Hybrid Materials: Synthesis, Characterization, and Application, G. Kickelbick (Ed.)”: Wiley-VCH Verlag GmbH & Co., KGaA Weinheim, Germany, 2000, 476 Pages, ISBN 9783-527-31299-3. Mater. Manuf. Process. 2009, 24, 1231. [Google Scholar] [CrossRef]
- Shi, X.; Fang, L.; Peng, H.; Deng, X.; Sun, Z. Metal-Organic Framework-Derived NiSe Embedded into a Porous Multi-Heteroatom Self-Doped Carbon Matrix as a Promising Anode for Sodium-Ion Battery. Nanomaterials 2022, 12, 3345. [Google Scholar] [CrossRef] [PubMed]
- Kalidasan, B.; Pandey, A.K.; Rahman, S.; Yadav, A.; Samykano, M.; Tyagi, V.V. Graphene–Silver Hybrid Nanoparticle Based Organic Phase Change Materials for Enhanced Thermal Energy Storage. Sustainability 2022, 14, 13240. [Google Scholar] [CrossRef]
- Ye, Z.; Jiang, Y.; Li, L.; Wu, F.; Chen, R. Self-Assembly of 0D–2D Heterostructure Electrocatalyst from MOF and MXene for Boosted Lithium Polysulfide Conversion Reaction. Adv. Mater. 2021, 33, 2101204. [Google Scholar] [CrossRef]
- Jin, J.; Xiao, T.; Zhang, Y.; Zheng, H.; Wang, H.; Wang, R.; Gong, Y.; He, B.; Liu, X.; Zhou, K. Hierarchical MXene/Transition Metal Chalcogenide Heterostructures for Electrochemical Energy Storage and Conversion. Nanoscale 2021, 13, 19740–19770. [Google Scholar] [CrossRef]
- Kurc, B.; Pigłowska, M.; Rymaniak, Ł.; Fuć, P. Modern Nanocomposites and Hybrids as Electrode Materials Used in Energy Carriers. Nanomaterials 2021, 11, 538. [Google Scholar] [CrossRef]
- Sanchez, C.; Rozes, L.; Ribot, F.; Laberty-Robert, C.; Grosso, D.; Sassoye, C.; Boissiere, C.; Nicole, L. “Chimie Douce”: A Land of Opportunities for the Designed Construction of Functional Inorganic and Hybrid Organic-Inorganic Nanomaterials. Comptes Rendus Chim. 2010, 13, 3–39. [Google Scholar] [CrossRef]
- Materials Design and Discovery Group; Chae, H.K.; Siberio-Pérez, D.Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. A Route to High Surface Area, Porosity and Inclusion of Large Molecules in Crystals. Nature 2004, 427, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Backov, R. Combining Soft Matter and Soft Chemistry: Integrative Chemistry towards Designing Novel and Complex Multiscale Architectures. Soft Matter 2006, 2, 452. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.L.M.; Gowda, S.R.; Shaijumon, M.M.; Ajayan, P.M. Hybrid Nanostructures for Energy Storage Applications. Adv. Mater. 2012, 24, 5045–5064. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bin Mujib, S.; Soares, D.; Singh, G. Electrode Materials for High-Performance Sodium-Ion Batteries. Materials 2019, 12, 1952. [Google Scholar] [CrossRef]
- Iro, Z.S.; Subramani, C.; Dash, S.S. A Brief Review on Electrode Materials for Supercapacitor. Int. J. Electrochem. Sci. 2016, 11, 10628–10643. [Google Scholar] [CrossRef]
- Gong, X.; Yang, Q.; Zhi, C.; Lee, P.S. Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Adv. Energy Mater. 2021, 11, 2003308. [Google Scholar] [CrossRef]
- Zhang, Y.; He, J.; Gao, Z.; Li, X. Converting Eggs to Flexible, All-Solid Supercapacitors. Nano Energy 2019, 65, 104045. [Google Scholar] [CrossRef]
- Nguyen, T.; Montemor, M.D.F. Metal Oxide and Hydroxide–Based Aqueous Supercapacitors: From Charge Storage Mechanisms and Functional Electrode Engineering to Need-Tailored Devices. Adv. Sci. 2019, 6, 1801797. [Google Scholar] [CrossRef]
- Zheng, X.; Luo, J.; Liu, Z.; Wang, Q.; Zhang, W.; Yang, C.; Yu, Y. Advanced Research on Energy Storage Materials and Devices. Coatings 2022, 12, 971. [Google Scholar] [CrossRef]
- Sinha, P.; Banerjee, S.; Kar, K.K. Activated Carbon as Electrode Materials for Supercapacitors. In Handbook of Nanocomposite Supercapacitor Materials II; Kar, K.K., Ed.; Springer International Publishing: Cham, Switzerland, 2020; Volume 302, pp. 113–144. ISBN 978-3-030-52358-9. [Google Scholar]
- Zhou, Q.; Yao, H. Recent Development of Carbon Electrode Materials for Electrochemical Supercapacitors. Energy Rep. 2022, 8, 656–661. [Google Scholar] [CrossRef]
- Zhu, C.; Ye, Y.; Guo, X.; Cheng, F. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater. 2022, 37, 59–92. [Google Scholar] [CrossRef]
- Narita, K.; Citrin, M.A.; Yang, H.; Xia, X.; Greer, J.R. 3D Architected Carbon Electrodes for Energy Storage. Adv. Energy Mater. 2021, 11, 2002637. [Google Scholar] [CrossRef]
- Sevilla, M.; Mokaya, R. Energy Storage Applications of Activated Carbons: Supercapacitors and Hydrogen Storage. Energy Environ. Sci. 2014, 7, 1250–1280. [Google Scholar] [CrossRef]
- Wei, J.; Geng, S.; Pitkänen, O.; Järvinen, T.; Kordas, K.; Oksman, K. Green Carbon Nanofiber Networks for Advanced Energy Storage. ACS Appl. Energy Mater. 2020, 3, 3530–3540. [Google Scholar] [CrossRef]
- Kado, Y.; Soneda, Y.; Hatori, H.; Kodama, M. Advanced Carbon Electrode for Electrochemical Capacitors. J. Solid State Electrochem. 2019, 23, 1061–1081. [Google Scholar] [CrossRef]
- Alwin, S.; Sahaya Shajan, X. Aerogels: Promising Nanostructured Materials for Energy Conversion and Storage Applications. Mater. Renew. Sustain. Energy 2020, 9, 7. [Google Scholar] [CrossRef]
- Lu, Z.; Raad, R.; Safaei, F.; Xi, J.; Liu, Z.; Foroughi, J. Carbon Nanotube Based Fiber Supercapacitor as Wearable Energy Storage. Front. Mater. 2019, 6, 138. [Google Scholar] [CrossRef]
- Carratalá-Abril, J.; Rey-Martínez, L.; Beneito-Ruiz, R.; Vilaplana-Cerdá, J. Development of Carbon-Based Composite Materials for Energy Storage. Mater. Today: Proc. 2016, 3, S240–S245. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of Graphene in Energy Storage Device–A Review. Renew. Sustain. Energy Rev. 2021, 135, 110026. [Google Scholar] [CrossRef]
- Hong, M.; Su, Y.; Zhou, C.; Yao, L.; Hu, J.; Yang, Z.; Zhang, L.; Zhou, Z.; Hu, N.; Zhang, Y. Scalable Synthesis of γ-Fe2O3/CNT Composite as High-Performance Anode Material for Lithium-Ion Batteries. J. Alloy. Compd. 2019, 770, 116–124. [Google Scholar] [CrossRef]
- Chen, Y.; Du, L.; Yang, P.; Sun, P.; Yu, X.; Mai, W. Significantly Enhanced Robustness and Electrochemical Performance of Flexible Carbon Nanotube-Based Supercapacitors by Electrodepositing Polypyrrole. J. Power Sources 2015, 287, 68–74. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. High-Performance Stretchable Yarn Supercapacitor Based on PPy@CNTs@urethane Elastic Fiber Core Spun Yarn. Nano Energy 2016, 27, 230–237. [Google Scholar] [CrossRef]
- Gu, T.; Wei, B. High-Performance All-Solid-State Asymmetric Stretchable Supercapacitors Based on Wrinkled MnO2/CNT and Fe2O3/CNT Macrofilms. J. Mater. Chem. A 2016, 4, 12289–12295. [Google Scholar] [CrossRef]
- Progress and Future Perspective. Natl. Sci. Rev. 2021, 8, nwaa261. [CrossRef]
- Zhou, Y.; Jin, P.; Zhou, Y.; Zhu, Y. High-Performance Symmetric Supercapacitors Based on Carbon Nanotube/Graphite Nanofiber Nanocomposites. Sci. Rep. 2018, 8, 9005. [Google Scholar] [CrossRef]
- Palacios, A.; Cong, L.; Navarro, M.E.; Ding, Y.; Barreneche, C. Thermal Conductivity Measurement Techniques for Characterizing Thermal Energy Storage Materials–A Review. Renew. Sustain. Energy Rev. 2019, 108, 32–52. [Google Scholar] [CrossRef]
- He, Y.; Li, A.; Dong, C.; Li, C.; Xu, L. Mesoporous Tin-Based Oxide Nanospheres/Reduced Graphene Composites as Advanced Anodes for Lithium-Ion Half/Full Cells and Sodium-Ion Batteries. Chem. A Eur. J. 2017, 23, 13724–13733. [Google Scholar] [CrossRef]
- Kurc, B.; Wysokowski, M.; Rymaniak, Ł.; Lijewski, P.; Piasecki, A.; Fuć, P. The Impact of the Vanadium Oxide Addition on the Physicochemical Performance Stability and Intercalation of Lithium Ions of the TiO2-RGO-Electrode in Lithium Ion Batteries. Materials 2020, 13, 1018. [Google Scholar] [CrossRef]
- Zhu, J.; Duan, R.; Zhang, S.; Jiang, N.; Zhang, Y.; Zhu, J. The Application of Graphene in Lithium Ion Battery Electrode Materials. SpringerPlus 2014, 3, 585. [Google Scholar] [CrossRef]
- Zhou, G.; Sun, J.; Jin, Y.; Chen, W.; Zu, C.; Zhang, R.; Qiu, Y.; Zhao, J.; Zhuo, D.; Liu, Y.; et al. Sulfiphilic Nickel Phosphosulfide Enabled Li2S Impregnation in 3D Graphene Cages for Li–S Batteries. Adv. Mater. 2017, 29, 1603366. [Google Scholar] [CrossRef]
- Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Adv. Funct. Mater. 2011, 21, 2366–2375. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, W.; Jang, J.; Manthiram, A. Sulfur-Embedded Activated Multichannel Carbon Nanofiber Composites for Long-Life, High-Rate Lithium–Sulfur Batteries. Adv. Energy Mater. 2017, 7, 1601943. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, Y.; Lu, X.; Xie, J. Fullerenes for Rechargeable Battery Applications: Recent Developments and Future Perspectives. J. Energy Chem. 2021, 55, 70–79. [Google Scholar] [CrossRef]
- Zhang, R.; Mizuno, F.; Ling, C. Fullerenes: Non-Transition Metal Clusters as Rechargeable Magnesium Battery Cathodes. Chem. Commun. 2015, 51, 1108–1111. [Google Scholar] [CrossRef]
- Prakash, D.; Manivannan, S. N, B Co-Doped and Crumpled Graphene Oxide Pseudocapacitive Electrode for High Energy Supercapacitor. Surf. Interfaces 2021, 23, 101025. [Google Scholar] [CrossRef]
- Li, B.; Tian, Z.; Li, H.; Yang, Z.; Wang, Y.; Wang, X. Self-Supporting Graphene Aerogel Electrode Intensified by NiCo2S4 Nanoparticles for Asymmetric Supercapacitor. Electrochim. Acta 2019, 314, 32–39. [Google Scholar] [CrossRef]
- Hao, J.; Liu, H.; Han, S.; Lian, J. MoS2 Nanosheet-Polypyrrole Composites Deposited on Reduced Graphene Oxide for Supercapacitor Applications. ACS Appl. Nano Mater. 2021, 4, 1330–1339. [Google Scholar] [CrossRef]
- Lal, M.S.; Badam, R.; Matsumi, N.; Ramaprabhu, S. Hydrothermal Synthesis of Single-Walled Carbon Nanotubes/TiO2 for Quasi-Solid-State Composite-Type Symmetric Hybrid Supercapacitors. J. Energy Storage 2021, 40, 102794. [Google Scholar] [CrossRef]
- Mahajan, H.; Mohanan, K.U.; Cho, S. Facile Synthesis of Biocarbon-Based MoS2 Composite for High-Performance Supercapacitor Application. Nano Lett. 2022, 22, 8161–8167. [Google Scholar] [CrossRef]
- Liu, C.; He, Z.; Niu, J.; Cheng, Q.; Zhao, Z.; Li, H.; Shi, J.; Wang, H. Two-Dimensional SnO 2 Anchored Biomass-Derived Carbon Nanosheet Anode for High-Performance Li-Ion Capacitors. RSC Adv. 2021, 11, 10018–10026. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, N.; Xu, Y.; Zhang, Z.; Wang, G.; Cheng, K. Solvent-Assisted Assembly of Reduced Graphene Oxide/MXene-Polypyrrole Composite Film for Flexible Supercapacitors. J. Colloid Interface Sci. 2023, 630, 817–827. [Google Scholar] [CrossRef]
- Das, J.K.; Padhy, A.; Parida, S.; Pathi, R.M.; Behera, J.N. Tetra Germanium Nonaselenide Enwrapped with Reduced Graphene Oxide and Functionalized Carbon Nanotubes (Ge4Se9 /RGO/FCNTs) Hybrids for Improved Energy Storage Performances. Dalton Trans. 2022, 51, 11526–11535. [Google Scholar] [CrossRef] [PubMed]
- Arunkumar, P.; Gayathri, S.; Saha, D.; Hun Han, J. Atypical Performance of CoO-Accelerated Interface Tweaking in Hierarchical Cobalt Phosphide/Oxide@P-Doped RGO Heterostructures for Hybrid Supercapacitors. J. Colloid Interface Sci. 2023, 635, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xia, G.; Pan, H.; Yu, X. Size-Controllable Nickel Sulfide Nanoparticles Embedded in Carbon Nanofibers as High-Rate Conversion Cathodes for Hybrid Mg-Based Battery. Adv. Sci. 2022, 9, 2106107. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Y.; Guo, R.; Liu, W.; Pei, H.; Yin, G.; Ye, D.; Yu, S.; Xie, J. A Flexible Copper Sulfide @ Multi-Walled Carbon Nanotubes Cathode for Advanced Magnesium-Lithium-Ion Batteries. J. Colloid Interface Sci. 2019, 553, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ouyang, Z.; He, S.; Song, X.; Luo, Y.; Zhao, J.; Xiao, Y.; Lei, S.; Yuan, C.; Cheng, B. An Individual Sandwich Hybrid Nanostructure of Cobalt Disulfide In-Situ Grown on N Doped Carbon Layer Wrapped on Multi-Walled Carbon Nanotubes for High-Efficiency Lithium Sulfur Batteries. J. Colloid Interface Sci. 2022, 610, 560–572. [Google Scholar] [CrossRef]
- Cong, R.; Jo, M.; Martino, A.; Park, H.-H.; Lee, H.; Lee, C.-S. Three-Dimensional Network of Nitrogen-Doped Carbon Matrix-Encapsulated Si Nanoparticles/Carbon Nanofibers Hybrids for Lithium-Ion Battery Anodes with Excellent Capability. Sci. Rep. 2022, 12, 16002. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, X.; Liu, Y.; Wen, Z. One-Step Low-Temperature Molten Salt Synthesis of Two-Dimensional Si@SiOx@C Hybrids for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 55844–55855. [Google Scholar] [CrossRef]
- Liu, G.; Wei, Y.; Li, T.; Gu, Y.; Guo, D.; Wu, N.; Qin, A.; Liu, X. Green and Scalable Fabrication of Sandwich-like NG/SiOx/NG Homogenous Hybrids for Superior Lithium-Ion Batteries. Nanomaterials 2021, 11, 2366. [Google Scholar] [CrossRef]
- Abbasnezhad, A.; Asgharzadeh, H.; Ansari Hamedani, A.; Hayat Soytas, S. One-Pot Synthesis of Tin Chalcogenide-Reduced Graphene Oxide-Carbon Nanotube Nanocomposite as Anode Material for Lithium-Ion Batteries. Dalton Trans. 2020, 49, 5890–5897. [Google Scholar] [CrossRef]
- Jin, Y.; Lee, M.E.; Kim, G.; Seong, H.; Nam, W.; Kim, S.K.; Moon, J.H.; Choi, J. Hybrid Nano Flake-like Vanadium Diselenide Combined on Multi-Walled Carbon Nanotube as a Binder-Free Electrode for Sodium-Ion Batteries. Materials 2023, 16, 1253. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Chen, Y.; Li, R.; Chen, J.; Wang, C.; Li, Z.; Zhong, S. Pomegranate Structured C@pSi/RGO Composite as High Performance Anode Materials of Lithium-Ion Batteries. Electrochim. Acta 2021, 367, 137491. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Tan, L.; Zhang, Y.; Xiong, S.; Feng, J. Metal-Organic Frameworks and Their Derivatives in Stable Zn Metal Anodes for Aqueous Zn-Ion Batteries. ChemPhysMater 2022, 1, 252–263. [Google Scholar] [CrossRef]
- Liang, Z.; Qu, C.; Guo, W.; Zou, R.; Xu, Q. Pristine Metal–Organic Frameworks and Their Composites for Energy Storage and Conversion. Adv. Mater. 2018, 30, 1702891. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Liang, Z.; Xia, D.; Zou, R. Metal-Organic Frameworks and Their Derivatives for Metal-Air Batteries. Energy Storage Mater. 2019, 23, 757–771. [Google Scholar] [CrossRef]
- Qiu, T.; Liang, Z.; Guo, W.; Tabassum, H.; Gao, S.; Zou, R. Metal–Organic Framework-Based Materials for Energy Conversion and Storage. ACS Energy Lett. 2020, 5, 520–532. [Google Scholar] [CrossRef]
- Mehtab, T.; Yasin, G.; Arif, M.; Shakeel, M.; Korai, R.M.; Nadeem, M.; Muhammad, N.; Lu, X. Metal-Organic Frameworks for Energy Storage Devices: Batteries and Supercapacitors. J. Energy Storage 2019, 21, 632–646. [Google Scholar] [CrossRef]
- Baumann, A.E.; Burns, D.A.; Liu, B.; Thoi, V.S. Metal-Organic Framework Functionalization and Design Strategies for Advanced Electrochemical Energy Storage Devices. Commun. Chem. 2019, 2, 86. [Google Scholar] [CrossRef]
- Goel, P.; Sundriyal, S.; Shrivastav, V.; Mishra, S.; Dubal, D.P.; Kim, K.-H.; Deep, A. Perovskite Materials as Superior and Powerful Platforms for Energy Conversion and Storage Applications. Nano Energy 2021, 80, 105552. [Google Scholar] [CrossRef]
- Kostopoulou, A.; Brintakis, K.; Nasikas, N.K.; Stratakis, E. Perovskite Nanocrystals for Energy Conversion and Storage. Nanophotonics 2019, 8, 1607–1640. [Google Scholar] [CrossRef]
- Tsvetkov, N.; Moon, B.C.; Lee, J.; Kang, J.K. Controlled Synthesis of Nanocrystalline Nb:SrTiO3 Electron Transport Layers for Robust Interfaces and Stable High Photovoltaic Energy Conversion Efficiency in Perovskite Halide Solar Cells. ACS Appl. Energy Mater. 2020, 3, 344–351. [Google Scholar] [CrossRef]
- Cai, W.; Cao, D.; Zhou, M.; Yan, X.; Li, Y.; Wu, Z.; Lü, S.; Mao, C.; Xie, Y.; Zhao, C.; et al. Sulfur-Tolerant Fe-Doped La0·3Sr0·7TiO3 Perovskite as Anode of Direct Carbon Solid Oxide Fuel Cells. Energy 2020, 211, 118958. [Google Scholar] [CrossRef]
- Yue, B.; Hu, Q.; Ji, L.; Wang, Y.; Liu, J. Facile Synthesis of Perovskite CeMnO3 Nanofibers as an Anode Material for High Performance Lithium-Ion Batteries. RSC Adv. 2019, 9, 38271–38279. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Shin, J.; Jang, I.-C.; Ju, Y.-W. Hydrothermal Synthesis of Three-Dimensional Perovskite NiMnO3 Oxide and Application in Supercapacitor Electrode. Energies 2020, 13, 36. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent Development of Mixed Transition Metal Oxide and Graphene/Mixed Transition Metal Oxide Based Hybrid Nanostructures for Advanced Supercapacitors. J. Alloy. Compd. 2019, 775, 1324–1356. [Google Scholar] [CrossRef]
- Abdel Maksoud, M.I.A.; Fahim, R.A.; Shalan, A.E.; Abd Elkodous, M.; Olojede, S.O.; Osman, A.I.; Farrell, C.; Al-Muhtaseb, A.H.; Awed, A.S.; Ashour, A.H.; et al. Advanced Materials and Technologies for Supercapacitors Used in Energy Conversion and Storage: A Review. Environ. Chem. Lett. 2021, 19, 375–439. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef]
- Kate, R.S.; Khalate, S.A.; Deokate, R.J. Overview of Nanostructured Metal Oxides and Pure Nickel Oxide (NiO) Electrodes for Supercapacitors: A Review. J. Alloy. Compd. 2018, 734, 89–111. [Google Scholar] [CrossRef]
- Zhang, X.; Song, W.-L.; Wang, M.; Tu, J.; Jiao, H.; Jiao, S. Photo-Electrochemical Enhanced Mechanism Enables a Fast-Charging and High-Energy Aqueous Al/MnO2 Battery. Energy Storage Mater. 2022, 45, 586–594. [Google Scholar] [CrossRef]
- Nwankwo, M.C.; Nwanya, A.C.; Agbogu, A.; Ekwealor, A.B.C.; Ejikeme, P.M.; Bucher, R.; Osuji, R.U.; Maaza, M.; Ezema, F.I. Electrochemical Supercapacitive Properties of SILAR-Deposited Mn3O4 Electrodes. Vacuum 2018, 158, 206–214. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, K.; Gao, Y.; Luo, H.; Lu, L. Recent Progress in the Applications of Vanadium-Based Oxides on Energy Storage: From Low-Dimensional Nanomaterials Synthesis to 3D Micro/Nano-Structures and Free-Standing Electrodes Fabrication. Adv. Energy Mater. 2017, 7, 1700547. [Google Scholar] [CrossRef]
- Quispe-Garrido, V.; Cerron-Calle, G.A.; Bazan-Aguilar, A.; Ruiz-Montoya, J.G.; López, E.O.; Baena-Moncada, A.M. Advances in the Design and Application of Transition Metal Oxide-Based Supercapacitors. Open Chem. 2021, 19, 709–725. [Google Scholar] [CrossRef]
- Yu, T.; Wang, F.; Zhang, X.; Lv, G.; Lv, H.; Wang, J.; Zhai, Y.; Li, M. Typha Orientalis Leaves Derived P-Doped Hierarchical Porous Carbon Electrode and Carbon/MnO2 Composite Electrode for High-Performance Asymmetric Supercapacitor. Diam. Relat. Mater. 2021, 116, 108450. [Google Scholar] [CrossRef]
- Fang, S.; Bresser, D.; Passerini, S. Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium- and Sodium-Ion Batteries. Adv. Energy Mater. 2020, 10, 1902485. [Google Scholar] [CrossRef]
- Hoang Huy, V.; Ahn, Y.; Hur, J. Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries. Nanomaterials 2021, 11, 1517. [Google Scholar] [CrossRef]
- Gogotsi, Y.; Huang, Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano 2021, 15, 5775–5780. [Google Scholar] [CrossRef]
- Kshetri, T.; Tran, D.T.; Le, H.T.; Nguyen, D.C.; Hoa, H.V.; Kim, N.H.; Lee, J.H. Recent Advances in MXene-Based Nanocomposites for Electrochemical Energy Storage Applications. Prog. Mater. Sci. 2021, 117, 100733. [Google Scholar] [CrossRef]
- Alam, A.; Saeed, G.; Lim, S. One-Step Synthesis of 2D–2D Co(OH)2–MoSe2 Hybrid Nanosheets as an Efficient Electrode Material for High-Performance Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 879, 114775. [Google Scholar] [CrossRef]
- Zhao, Y.; He, J.; Dai, M.; Zhao, D.; Wu, X.; Liu, B. Emerging CoMn-LDH@MnO2 Electrode Materials Assembled Using Nanosheets for Flexible and Foldable Energy Storage Devices. J. Energy Chem. 2020, 45, 67–73. [Google Scholar] [CrossRef]
- Meng, J.; Liu, X.; Niu, C.; Pang, Q.; Li, J.; Liu, F.; Liu, Z.; Mai, L. Advances in Metal–Organic Framework Coatings: Versatile Synthesis and Broad Applications. Chem. Soc. Rev. 2020, 49, 3142–3186. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.; Xu, X.; Pan, D.; Liu, Y.; Bai, Y.; Shao, L. Ultrathin 2D Metal–Organic Framework Nanosheets In Situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device. Nano-Micro Lett. 2020, 12, 46. [Google Scholar] [CrossRef]
- Tahir, M.B.; Fatima, U. Recent Trends and Emerging Challenges in Two-dimensional Materials for Energy Harvesting and Storage Applications. Energy Storage 2022, 4, e244. [Google Scholar] [CrossRef]
- Wang, J.; Malgras, V.; Sugahara, Y.; Yamauchi, Y. Electrochemical Energy Storage Performance of 2D Nanoarchitectured Hybrid Materials. Nat. Commun. 2021, 12, 3563. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, B.; Liu, F.; Cheng, J.; Zhang, X.; Zhang, L. Full Synergistic Contribution of Electrodeposited Three-Dimensional NiCo2O4@MnO2 Nanosheet Networks Electrode for Asymmetric Supercapacitors. Nano Energy 2016, 27, 627–637. [Google Scholar] [CrossRef]
- Chakrabarty, N.; Chakraborty, A.K. Controlling the Electrochemical Performance of β-Ni(OH)2/Carbon Nanotube Hybrid Electrodes for Supercapacitor Applications by La Doping: A Systematic Investigation. Electrochim. Acta 2019, 297, 173–187. [Google Scholar] [CrossRef]
- Siwal, S.S.; Zhang, Q.; Devi, N.; Thakur, V.K. Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers 2020, 12, 505. [Google Scholar] [CrossRef] [PubMed]
- Naresh, V.; Elias, L.; Martha, S.K. Poly(3,4-Ethylenedioxythiophene) Coated Lead Negative Plates for Hybrid Energy Storage Systems. Electrochim. Acta 2019, 301, 183–191. [Google Scholar] [CrossRef]
- Das, H.T.; Barai, P.; Dutta, S.; Das, N.; Das, P.; Roy, M.; Alauddin, M.; Barai, H.R. Polymer Composites with Quantum Dots as Potential Electrode Materials for Supercapacitors Application: A Review. Polymers 2022, 14, 1053. [Google Scholar] [CrossRef]
- Kumar, S.M.; Yasoda, Y.K.; Das, P.; Malik, S.; Kothurkar, N.K.; Batabyal, S.K. Urea-Mediated Synthesized Carbon Quantum Dots to Tune the Electrochemical Performance of Polyaniline Nanorods for Supercapacitor Device. J. Sci. Adv. Mater. Devices 2022, 7, 100403. [Google Scholar] [CrossRef]
- Lian, J.; Wang, X.; Zhang, W.; Huang, Y.; Xia, T.; Lian, Y. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery. J. Nanosci. Nanotechnol. 2016, 16, 6494–6497. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, N.P.S.; Jadoun, S.; Rathore, B.S.; Barani, M.; Zarrintaj, P. Redox Polymers for Capacitive Energy Storage Applications. J. Energy Storage 2021, 43, 103218. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; He, X.; Mao, X.; Zhou, Y.; Xu, J.; Yang, Y. Modifying Reduced Graphene Oxide by Conducting Polymer Through a Hydrothermal Polymerization Method and Its Application as Energy Storage Electrodes. Nanoscale Res. Lett. 2019, 14, 226. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, S.H.; Abdollahi Aghdam, S. High-Performance Asymmetric Supercapacitor Based on Ternary MnO2-Polyaniline-Reduced Graphene Oxide Quantum Dots Nanocomposite Electrode. J. Electron. Mater. 2019, 48, 5088–5098. [Google Scholar] [CrossRef]
- Ramadan, A.; Anas, M.; Ebrahim, S.; Soliman, M.; Abou-Aly, A. Effect of Co-Doped Graphene Quantum Dots to Polyaniline Ratio on Performance of Supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 7247–7259. [Google Scholar] [CrossRef]
- Syed Zainol Abidin, S.N.J.; Mamat, S.; Abdul Rasyid, S.; Zainal, Z.; Sulaiman, Y. Fabrication of Poly(Vinyl Alcohol)-Graphene Quantum Dots Coated with Poly(3,4-Ethylenedioxythiophene) for Supercapacitor. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 50–58. [Google Scholar] [CrossRef]
- Samy, M.M.; Mohamed, M.G.; El-Mahdy, A.F.M.; Mansoure, T.H.; Wu, K.C.-W.; Kuo, S.-W. High-Performance Supercapacitor Electrodes Prepared From Dispersions of Tetrabenzonaphthalene-Based Conjugated Microporous Polymers and Carbon Nanotubes. ACS Appl. Mater. Interfaces 2021, 13, 51906–51916. [Google Scholar] [CrossRef]
- Gong, S.H.; Wang, B.Q.; Xue, Y.; Sun, Q.S.; Wang, J.; Kuai, J.; Liu, F.; Cheng, J.P. NiCoO2 and Polypyrrole Decorated Three-Dimensional Carbon Nanofiber Network with Coaxial Cable-like Structure for High-Performance Supercapacitors. J. Colloid Interface Sci. 2022, 628, 343–355. [Google Scholar] [CrossRef]
- Sun, X.; Hao, Z.; Zeng, F.; Xu, J.; Nan, H.; Meng, Z.; Yang, J.; Shi, W.; Zeng, Y.; Hu, X.; et al. Coaxial Cable-like Dual Conductive Channel Strategy in Polypyrrole Coated Perovskite Lanthanum Manganite for High-Performance Asymmetric Supercapacitors. J. Colloid Interface Sci. 2022, 610, 601–609. [Google Scholar] [CrossRef]
- Li, Q.; Li, D.; Wang, H.; Wang, H.; Li, Y.; Si, Z.; Duan, Q. Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries. ACS Appl. Mater. Interfaces 2019, 11, 28801–28808. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhang, B.; Wang, J.; Zhao, H.; Ma, W.; Xu, L.; Zhang, W.; Zhou, K.; Du, Y.; He, G. Electrochromic Poly(Chalcogenoviologen)s as Anode Materials for High-Performance Organic Radical Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2019, 58, 8468–8473. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, S.; Han, D.; Si, Z.; Wang, H. Carbonyl-rich Poly(Pyrene-4,5,9,10-tetraone Sulfide) as Anode Materials for High-Performance Li and Na-Ion Batteries. Chem. Asian J. 2021, 16, 1973–1978. [Google Scholar] [CrossRef] [PubMed]
- Elbinger, L.; Schröter, E.; Friebe, C.; Hager, M.D.; Schubert, U.S. Hydrophilic Crosslinked TEMPO-Methacrylate Copolymers–a Straight Forward Approach towards Aqueous Semi-Organic Batteries. ChemSusChem 2022, 15, e202200830. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Cheng, X.; Cao, X.; He, J.; Guo, W.; Li, D.; Xu, Z.J.; Huang, Y.; Lu, J.; Zhang, Q. Nanostructured Metal–Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage. Small 2019, 15, 1903188. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Cornelius, C.J. Designing Hybrid Inorganic-Organic Materials By Utilizing Sol-Gel Chemistry for Batteries and Energy Storage. Meet. Abstr. 2014, MA2014-01, 1631. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, W.; Sun, P.; Ying, X.; Huang, J.; Li, X. Electrode Material of PVA/PANI/GO-PANI Hybrid Hydrogels through Secondary Induced Assembly In Situ Polymerization Method for Flexible Supercapacitors. Macromol. Mater. Eng 2022, 307, 2200366. [Google Scholar] [CrossRef]
- Stepanov, A.B.; Varakin, I.N.; Menukhov, V.V. Double-Layer Capacitor. US Patent 5,986,876, 16 November 1999. [Google Scholar]
- Bistline, J.; Cole, W.; Damato, G.; DeCarolis, J.; Frazier, W.; Linga, V.; Marcy, C.; Namovicz, C.; Podkaminer, K.; Sims, R.; et al. Erratum: Energy Storage in Long-Term System Models: A Review of Considerations, Best Practices, and Research Needs. Prog. Energy 2020, 2, 039601. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Acc. Chem. Res. 2013, 46, 1094–1103. [Google Scholar] [CrossRef]
- Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chem. Rev. 2014, 114, 11619–11635. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Peng, R.; Huang, Y.; Guo, L.; Qi, Y. LiMn2O4/Graphene Composites as Cathodes with Enhanced Electrochemical Performance for Lithium-Ion Capacitors. RSC Adv. 2016, 6, 54866–54873. [Google Scholar] [CrossRef]
- Ni, J.; Wang, H.; Qu, Y.; Gao, L. PbO2 Electrodeposited on Graphite for Hybrid Supercapacitor Applications. Phys. Scr. 2013, 87, 045802. [Google Scholar] [CrossRef]
- Tie, D.; Huang, S.; Wang, J.; Ma, J.; Zhang, J.; Zhao, Y. Hybrid Energy Storage Devices: Advanced Electrode Materials and Matching Principles. Energy Storage Mater. 2019, 21, 22–40. [Google Scholar] [CrossRef]
- Balogun, M.-S.; Qiu, W.; Luo, Y.; Meng, H.; Mai, W.; Onasanya, A.; Olaniyi, T.K.; Tong, Y. A Review of the Development of Full Cell Lithium-Ion Batteries: The Impact of Nanostructured Anode Materials. Nano Res. 2016, 9, 2823–2851. [Google Scholar] [CrossRef]
Application in Supercapacitors | |||||
---|---|---|---|---|---|
Materials | Capacitance (Fg−1) | Energy Density (Wh kg−1) | Power Density (kW kg−1) | Retention %/Cycles | Ref. |
N, B co-doped -GO | 885 | 23.23 | 872 | 80/10,000 | [72] |
NiCo2S4/graphene aerogel | 704.34 | 20.9 | 800.2 | 80.3/1500 | [73] |
MoS2 NS-polypyrrole -rGO | 1942 | 39.1 | 700 | 78.6/3000 | [74] |
SWCNTs/TiO2 | 144 | 20 | 10,000 | 95/10,000 | [75] |
Bio-C/MoS2 | 945 | 157 | 80 | 92/10,000 | [76] |
SnO2/PCN electrode | 799 | 138 | 53 | 95/500 | [77] |
rGO/MXene-PPy composite | 408.2 | 11.3 | 500 | 91.2/10,000 | [78] |
Ge4Se9/RGO/FCNTs | 440 | 32 | 1071 | 83/5000 | [79] |
CoP/CoO@PrGO | 402 | 4.2 | 785 | 100/10,000 | [80] |
Application in Batteries | |||||
Materials | Discharge Capacity (mAh g−1) | Current Density ( mAh g−1) | Retention %/Cycles | Application | Ref. |
NiS@C | 435 | 50 | 99.9/500 | Mg2+/Li+ battery | [81] |
F-CuS-CNT hybrid | 479 | 165 | 85.5/100 | Mg2+/Li+ battery | [82] |
MWCNTs@N-doped-C@CoS2 | 1590 | 100 | 99.9/250 | Li-S battery | [83] |
NG/C@Si/CNF hybrid | 1346.20 | 100 | 97.8/100 | Li-ion batteries | [84] |
2D Si@SiOx@MpC | 1239 | 100 | 99.94/600 | Li-ion batteries | [85] |
NG/SiOx/NG hybrids | 545 | 200 | 99/450 | Li-ion batteries | [86] |
TC-RGO-CNT hybrid | 1401 | 50 | 99%/150 | Li-ion batteries | [87] |
VSe2@MWCNT hybrid | 319.6 | 50 | 99.7/200 | Na-ion batteries | [88] |
C@porousSi/rGO composite | 825.7 | 40 | 90.4/100 | Li-ion batteries | [89] |
Applications in Supercapacitors | ||||
---|---|---|---|---|
Electrode Materials | Capacitance (Fg−1) | Power Density (kW kg−1) | Retention %/Cycles | Ref. |
MnO2/PANI/rGO QD | 423 | 640 | 85/2000 | [131] |
PANI/S,N:G QDs | 2524 | 2250 | 100/1000 | [132] |
PVA-GQD/PEDO | 291.86 | 984.4 | 98/1000 | [133] |
TBN–Py CMP/SWCNT | 430 | - | 99/2000 | [134] |
3D NiCoO2-PPy | 1037 | 465 | 89/7000 | [135] |
LaMnO3@CC-Ppy | 862 | - | 66/3000 | [136] |
Applications in Batteries | ||||
Electrode Materials | Discharge Capacity (mAh g−1) | Current Density (mAg−1) | Retention (%)/ Cycles | |
Polymer/CNT hybrid films | 142.3 | 500 | 74.6/300 | [137] |
Poly(Te-BnV) anode | 502 | - | 100/300 | [138] |
Poly(pyrene-tetraone Sulfide) | 697.1 | 335.4 | 82/500 | [139] |
TEMPO-Methacrylate Copolymers | 1110 | - | 99/500 | [140] |
Metal-organic conjugated polymers | 1164 | - | 99/1500 | [141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.S.; Mubarak, M.; Lee, H.-J. Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices. Inorganics 2023, 11, 183. https://doi.org/10.3390/inorganics11050183
Islam MS, Mubarak M, Lee H-J. Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices. Inorganics. 2023; 11(5):183. https://doi.org/10.3390/inorganics11050183
Chicago/Turabian StyleIslam, Md. Shahinul, Mahfuza Mubarak, and Ha-Jin Lee. 2023. "Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices" Inorganics 11, no. 5: 183. https://doi.org/10.3390/inorganics11050183
APA StyleIslam, M. S., Mubarak, M., & Lee, H. -J. (2023). Hybrid Nanostructured Materials as Electrodes in Energy Storage Devices. Inorganics, 11(5), 183. https://doi.org/10.3390/inorganics11050183