Interaction of Redox-Active Copper(II) with Catecholamines: A Combined Spectroscopic and Theoretical Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Interaction of Catecholamines with Cu(II): A UV-Vis and EPR Spectroscopic Study
2.2. Radical Scavenging Activity of Catecholamines and Their Cu(II) Complexes
2.3. EPR Spin-Trapping Study of Catecholamines under the Conditions of Fenton Reaction
2.4. DFT Calculations
3. Experimental
3.1. Spectroscopic Study
3.1.1. UV-Vis Spectroscopy
3.1.2. EPR Spectroscopy
3.2. Radical Scavenging Activity
3.3. EPR Spin-Trapping
3.4. Theoretical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995, 82, 969–974. [Google Scholar] [CrossRef]
- Thomas, C.; Mackey, M.M.; Diaz, A.A.; Cox, D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009, 14, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, M.; Kim, S.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J. Neural Transm. 2012, 119, 891–910. [Google Scholar] [CrossRef] [PubMed]
- Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci. 2014, 16, 193–217. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Makova, M.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Rhodes, C.J.; Valko, M. Essential metals in health and disease. Chem. Biol. Interact. 2022, 367, 110173. [Google Scholar] [CrossRef]
- Lovell, M.; Robertson, J.; Teesdale, W.; Campbell, J.; Markesbery, W. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 1998, 158, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Tundis, R.; Ullah, H.; Aschner, M.; Belwal, T.; Mirzaei, H.; Akkol, E.K. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem. Toxicol. 2020, 146, 111817. [Google Scholar] [CrossRef] [PubMed]
- Gnegy, M.E. Catecholamines. In Basic Neurochemistry, 8th ed.; Brady, S.T., Siegel, G.J., Albers, W.R., Price, D.L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; pp. 283–299. [Google Scholar]
- Felten, D.; O’Banion, M.; Maida, M. Neurons and Their Properties. In Netter’s Atlas of Neuroscience, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 1–42. [Google Scholar]
- Nagatsu, T.; Sawada, M. L-dopa therapy for Parkinson’s disease: Past, present, and future. Park. Relat. Disord. 2009, 15, S3–S8. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Lenders, J.W.M. Catecholamines. In Encyclopedia of Endocrine Diseases, 2nd ed.; Huhtaniemi, I., Martini, L., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 21–24. [Google Scholar]
- Howes, O.; Kapur, S. The Dopamine Hypothesis of Schizophrenia: Version III--The Final Common Pathway. Schizophr. Bull. 2009, 35, 549–562. [Google Scholar] [CrossRef]
- García, C.R.; Angelé-Martínez, C.; Wilkes, J.A.; Wang, H.C.; Battin, E.E.; Brumaghim, J.L. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: Metal binding as a general antioxidant mechanism. Dalt. Trans. 2012, 41, 6458–6467. [Google Scholar] [CrossRef]
- Napolitano, A.; Manini, P.; d’Ischia, M. Oxidation Chemistry of Catecholamines and Neuronal Degeneration: An Update. Curr. Med. Chem. 2011, 18, 1832–1845. [Google Scholar] [CrossRef] [PubMed]
- Adolfsson, R.; Gottfries, C.G.; Roos, B.E.; Winblad, B.; Gartner, J.; Langford, A.; O’Brien, A.; Hosang, G.M.; Fisher, H.L.; Hodgson, K.; et al. Changes in the Brain Catecholamines in Patients with Dementia of Alzheimer Type. Br. J. Psychiatry 1979, 135, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Vondrakova, D.; Lawson, M.; Valko, M. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell. Biochem. 2010, 345, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Walaas, E.; Walaas, O.; Haavaldsen, S.; Pedersen, B. Spectrophotometric and electron-spin resonance studies of complexes of catecholamines with Cu(II) ions and the interaction of ceruloplasmin with catecholamines. Arch. Biochem. Biophys. 1963, 100, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Fazakerley, G.V.; Linder, P.W.; Torrington, R.G.; Wright, M.R.W. Potentiometric and spectrophotometric studies of the copper(II) complexes of methyldopa, methyltyrosine, and catechol in aqueous solution. J. Chem. Soc. Dalton Trans. 1979, 12, 1872–1880. [Google Scholar] [CrossRef]
- Fujisawa, K.; Ono, T.; Okamura, M. Synthesis and Characterization of Catecholato Copper(II) Complexes with Sterically Hindered Neutral and Anionic N3 Type Ligands: Tris(3,5-diisopropyl-1-pyrazolyl)methane and Hydrotris(3,5-diisopropyl-1-pyrazolyl)borate. Inorganics 2020, 8, 37. [Google Scholar] [CrossRef]
- Padnya, P.; Shibaeva, K.; Arsenyev, M.; Baryshnikova, S.; Terenteva, O.; Shiabiev, I.; Khannanov, A.; Boldyrev, A.; Gerasimov, A.; Grishaev, D.; et al. Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules 2021, 26, 2334. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, M.; Gryko, K.; Gołębiewska, E.; Świderski, G.; Lewandowska, H.; Pruszyński, M.; Zawadzka, M.; Kozłowski, M.; Sienkiewicz-Gromiuk, J.; Lewandowski, W. Fe(III) and Cu(II) Complexes of Chlorogenic Acid: Spectroscopic, Thermal, Anti-/Pro-Oxidant, and Cytotoxic Studies. Materials 2022, 15, 6832. [Google Scholar] [CrossRef]
- Kostrzewa, R.M.; Kostrzewa, J.P.; Brus, R. Neuroprotective and neurotoxic roles of levodopa (L-DOPA) in neurodegenerative disorders relating to Parkinson’s disease. Amino Acids 2002, 23, 57–63. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, Toxicity and Oxidative Stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [PubMed]
- Pardo, B.; Mena, M.A.; Fahn, S.; de Yébenes, J.G. Ascorbic acid protects against levodopa-induced neurotoxicity on a catecholamine-rich human neuroblastoma cell line. Mov. Disord. 1993, 8, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Baez, S.; Segura-Aguilar, J.; Widersten, M.; Johansson, A.S.; Mannervik, B. Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochem. J. 1997, 324, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Paris, I.; Dagnino-Subiabre, A.; Marcelain, K.; Bennett, L.B.; Caviedes, P.; Caviedes, R.; Azar, C.O.; Segura-Aguilar, J. Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J. Neurochem. 2001, 77, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Boggess, R.K.; Martin, R.B. Copper(II) Chelation by Dopa, Epinephrine, and Other Catechols. J. Am. Chem. Soc. 1975, 97, 3076–3081. [Google Scholar] [CrossRef]
- West, G.B. Oxidation of adrenaline in alkaline solution. Br. J. Pharmacol. Chemother. 1947, 2, 121–130. [Google Scholar] [CrossRef]
- Trautner, E.M.; Bradley, T.R. The Early Stages of the Oxidation of Adrenaline in Dilute Solution. Aust. J. Biol. Sci. 1951, 4, 303–343. [Google Scholar] [CrossRef]
- Balla, J.; Kiss, T.; Jameson, R.F. Copper(II)-catalyzed oxidation of catechol by molecular oxygen in aqueous solution. Inorg. Chem 1992, 31, 58–62. [Google Scholar] [CrossRef]
- Jomova, K.; Hudecova, L.; Lauro, P.; Simunková, M.; Barbierikova, Z.; Malcek, M.; Alwasel, S.H.; Alhazza, I.M.; Rhodes, C.J.; Valko, M. The effect of Luteolin on DNA damage mediated by a copper catalyzed Fenton reaction. J. Inorg. Biochem. 2022, 226, 111635. [Google Scholar] [CrossRef] [PubMed]
- Dimić, D.; Milenković, D.; Dimitrić Marković, J.; Marković, Z. Antiradical activity of catecholamines and metabolites of dopamine: Theoretical and experimental study. Phys. Chem. Chem. Phys. 2017, 19, 12970–12980. [Google Scholar] [CrossRef]
- Kładna, A.; Berczyński, P.; Kruk, I.; Michalska, T.; Aboul-Enein, H.Y. Scavenging of hydroxyl radical by catecholamines. Luminescence 2012, 27, 473–477. [Google Scholar] [CrossRef]
- Kładna, A.; Berczyński, P.; Kruk, I.; Michalska, T.; Aboul-Enein, H.Y. Superoxide anion radical scavenging property of catecholamines. Luminescence 2013, 28, 450–455. [Google Scholar] [CrossRef]
- Bindoli, A.; Scutari, G.; Rigobello, M.P. The role of adrenochrome in stimulating the oxidation of catecholamines. Neurotox. Res. 1999, 1, 71–80. [Google Scholar] [CrossRef]
- Simunkova, M.; Barbierikova, Z.; Jomova, K.; Hudecova, L.; Lauro, P.; Alwasel, S.H.; Alhazza, I.; Rhodes, C.J.; Valko, M. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu (II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. Int. J. Mol. Sci. 2021, 22, 1619. [Google Scholar] [CrossRef]
- Firme, C.L.; Antunes, O.A.C.; Esteves, P.M. Relation between bond order and delocalization index of QTAIM. Chem. Phys. Lett. 2009, 468, 129–133. [Google Scholar] [CrossRef]
- Wu, J.; Yu, D.; Liu, S.; Rong, C.; Zhong, A.; Chattaraj, P.K.; Liu, S. Is It Possible to Determine Oxidation States for Atoms in Molecules Using Density-Based Quantities? An Information-Theoretic Approach and Conceptual Density Functional Theory Study. J. Phys. Chem. A 2019, 123, 6751–6760. [Google Scholar] [CrossRef]
- Ferreira, C.M.H.; Pinto, I.S.S.; Soares, E.V.; Soares, H.M.V.M. (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions-a review. RSC Adv. 2015, 5, 30989–31003. [Google Scholar] [CrossRef]
- Mash, H.E.; Chin, Y.P.; Sigg, L.; Hari, R.; Xue, H. Complexation of copper by zwitterionic aminosulfonic (good) buffers. Anal. Chem. 2003, 75, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colic-Salvetti Correlation-Energy Formula into a Functional of the Electron D. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry.III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Wachters, A.J.H. Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. J. Chem. Phys. 1970, 52, 1033–1036. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Bacskay, G.B. A quadritically convergent hartree-fock (QC-SCF) method. Application to open shell orbital optimization and coupled perturbed hartree-fock calculations. Chem. Phys. 1952, 65, 383–396. [Google Scholar] [CrossRef]
- Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab Initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990; ISBN 0198558651. [Google Scholar]
- Keith, T.A. AIMAll, Version 14.04.17, TK Gristmill Software: Overland Park, KS, USA, 2014. Available online: aim.tkgristmill.com(accessed on 1 March 2021).
- Ai-Guo, Z. Dissecting the nature of halogen bonding interactions from energy decomposition and wavefunction analysis. Mon. Für Chem.-Chem. Mon. 2017, 148, 1259–1267. [Google Scholar] [CrossRef]
- Portmann, S.; Luthi, H.P. Molekel: An interactive molecular graphics tool. Chimia 2000, 54, 766–770. [Google Scholar] [CrossRef]
ABTS•+ INH/% | TYR | L-DOPA | DA | NE | EP |
---|---|---|---|---|---|
catecholamine | 33 | 96 | 74 | 92 | 37 |
+ Cu(II) fresh | 36 | 97 | 75 | 93 | 36 |
+ Cu(II) 24 h | 32 | 99 | 77 | 94 | 55 |
Complex | Binding | d(Cu-X)/Å | DI(Cu-X)/- | q(Cu)/e | Spin(Cu)/e | Cu Oxidation State |
---|---|---|---|---|---|---|
Cu-TYR a | O-Cu-Oa | 1.86 a | 0.52 a | 0.80 a | 0.01 a | Cu(I) |
N-Cu-N | 1.96 | 0.55 | 0.97 | 0.48 | Cu(I-II) | |
O-Cu-N | 1.91 b, 1.93 c | 0.45, 0.59 c | 1.06 | 0.50 | Cu(I-II) | |
Cu-LDOPA | O,O-Cu-O,O | 1.97 | 0.38 | 1.40 | 0.74 | Cu(II) |
N-Cu-N | 1.91 | 0.62 | 0.67 | 0.02 | Cu(I) | |
O,O-Cu-N | 1.96 b, 1.94 c | 0.38 b, 0.58 c | 1.00 | 0.35 | Cu(I-II) | |
Cu-DA | O,O-Cu-O,O | 1.96 | 0.39 | 1.40 | 0.74 | Cu(II) |
N-Cu-N | 1.91 | 0.63 | 0.70 | 0.07 | Cu(I) | |
O,O-Cu-N | 1.96 b, 1.92 c | 0.37 b, 0.61 c | 1.09 | 0.44 | Cu(I-II) | |
Cu-NE | O,O-Cu-O,O | 1.96 | 0.39 | 1.40 | 0.75 | Cu(II) |
N-Cu-N | 1.91 | 0.63 | 0.72 | 0.10 | Cu(I) | |
O,O-Cu-N | 1.95 b, 1.91 c | 0.37 b, 0.62 c | 1.14 | 0.50 | Cu(I-II) | |
Cu-EP | O,O-Cu-O,O | 1.98 | 0.37 | 1.36 | 0.70 | Cu(II) |
N-Cu-N | 1.92 | 0.60 | 0.72 | 0.09 | Cu(I) | |
O,O-Cu-N | 1.92 b, 1.91 c | 0.42 b, 0.62 c | 0.73 | 0.00 | Cu(I) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimunková, M.; Barbieriková, Z.; Mazúr, M.; Valko, M.; Alomar, S.Y.; Alwasel, S.H.; Malček, M. Interaction of Redox-Active Copper(II) with Catecholamines: A Combined Spectroscopic and Theoretical Study. Inorganics 2023, 11, 208. https://doi.org/10.3390/inorganics11050208
Šimunková M, Barbieriková Z, Mazúr M, Valko M, Alomar SY, Alwasel SH, Malček M. Interaction of Redox-Active Copper(II) with Catecholamines: A Combined Spectroscopic and Theoretical Study. Inorganics. 2023; 11(5):208. https://doi.org/10.3390/inorganics11050208
Chicago/Turabian StyleŠimunková, Miriama, Zuzana Barbieriková, Milan Mazúr, Marian Valko, Suliman Y. Alomar, Saleh H. Alwasel, and Michal Malček. 2023. "Interaction of Redox-Active Copper(II) with Catecholamines: A Combined Spectroscopic and Theoretical Study" Inorganics 11, no. 5: 208. https://doi.org/10.3390/inorganics11050208
APA StyleŠimunková, M., Barbieriková, Z., Mazúr, M., Valko, M., Alomar, S. Y., Alwasel, S. H., & Malček, M. (2023). Interaction of Redox-Active Copper(II) with Catecholamines: A Combined Spectroscopic and Theoretical Study. Inorganics, 11(5), 208. https://doi.org/10.3390/inorganics11050208