FeNi Confined in N-Doped Carbon as a Highly Efficient Bi-Functional Catalyst for Rechargeable Zn–Air Batteries
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of g-C3N4
2.2. Synthesis of the Electrocatalysts
3. Results and Discussion
3.1. Preparation and Physicochemical Characterizations
3.2. Electrocatalytic Activities of FeNi@NC Catalysts for ORR
3.3. OER Performance on FeNi@NC Catalyst
3.4. Application of FeNi@NC in RZABs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Liang, X.; Liu, Y.; Ai, X.; Asefa, T.; Zou, X. Active Site Engineering in Porous Electrocatalysts. Adv. Mater. 2020, 32, e2002435. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Luo, M.; Chen, X.; Wang, L.; Li, Y.; Li, M.; Qin, Y.; Li, C.; Xu, N.; et al. Ultrathin PtPd-Based Nanorings with Abundant Step Atoms Enhance Oxygen Catalysis. Adv. Mater. 2018, 30, e1802136. [Google Scholar] [CrossRef] [PubMed]
- Kuo, D.Y.; Kawasaki, J.K.; Nelson, J.N.; Kloppenburg, J.; Hautier, G.; Shen, K.M.; Schlom, D.G.; Suntivich, J. Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO(2)(110). J. Am. Chem. Soc. 2017, 139, 3473–3479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, M.; Liu, H.; Shi, S.; Wang, Z.; Zhang, B.; Song, L.; Shang, J.; Yang, Y.; Ma, C.; et al. Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn-Air Batteries. Nano Lett. 2021, 21, 2255–2264. [Google Scholar] [CrossRef]
- Xu, X.; Xie, J.; Liu, B.; Wang, R.; Liu, M.; Zhang, J.; Liu, J.; Cai, Z.; Zou, J. PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2022, 316, 121687. [Google Scholar] [CrossRef]
- Niu, W.; Pakhira, S.; Marcus, K.; Li, Z.; Mendoza-Cortes, J.L.; Yang, Y. Apically Dominant Mechanism for Improving Catalytic Activities of N-Doped Carbon Nanotube Arrays in Rechargeable Zinc-Air Battery. Adv. Energy Mater. 2018, 8, 1800480. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Zhang, G.; Hu, Y.; Wang, J.; Sun, T.; Regier, T.; Qiao, J.; Sun, S. Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon. Energy 2020, 3, 176–187. [Google Scholar] [CrossRef]
- Yin, J.; Jin, J.; Liu, H.; Huang, B.; Lu, M.; Li, J.; Liu, H.; Zhang, H.; Peng, Y.; Xi, P.; et al. NiCo(2) O(4)-Based Nanosheets with Uniform 4 nm Mesopores for Excellent Zn-Air Battery Performance. Adv. Mater. 2020, 32, e2001651. [Google Scholar] [CrossRef]
- An, L.; Huang, B.; Zhang, Y.; Wang, R.; Zhang, N.; Dai, T.; Xi, P.; Yan, C.H. Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angew. Chem. Int. Ed. 2019, 58, 9459–9463. [Google Scholar] [CrossRef]
- Zhu, C.; Shi, Q.; Xu, B.Z.; Fu, S.; Wan, G.; Yang, C.; Yao, S.; Song, J.; Zhou, H.; Du, D.; et al. Hierarchically Porous M–N–C (M = Co and Fe) Single-Atom Electrocatalysts with Robust MNx Active Moieties Enable Enhanced ORR Performance. Adv. Energy Mater. 2018, 8, 1801956. [Google Scholar] [CrossRef]
- Wan, W.; Zhao, Y.; Wei, S.; Triana, C.A.; Li, J.; Arcifa, A.; Allen, C.S.; Cao, R.; Patzke, G.R. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 2021, 12, 5589. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. Efficient water oxidation using nanostructured alpha-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-y.; Zou, Q.; Li, Z.; Xie, D.; Niu, Y.; Zou, J.; Zeng, X.; Huang, J. MOF derived Ni-Fe based alloy carbon materials for efficient bifunctional electrocatalysts applied in Zn-air battery. Appl. Surf. Sci. 2022, 572, 151286. [Google Scholar] [CrossRef]
- Hu, H.; Meng, Y.; Mei, Y.; Hou, P.X.; Liu, C.; Cheng, H.M.; Shao, M.; Li, J.C. Bifunctional oxygen electrocatalysts enriched with single Fe atoms and NiFe2O4 nanoparticles for rechargeable zinc–air batteries. Energy Storage Mater. 2023, 54, 517–523. [Google Scholar] [CrossRef]
- Lin, S.Y.; Zhang, X.; Sang, S.Y.; Zhang, L.; Feng, J.J.; Wang, A.J. Bio-derived FeNi alloy confined in N-doped carbon nanosheets as efficient air electrodes for Zn-air battery. J. Colloid. Interface Sci. 2022, 628, 499–507. [Google Scholar] [CrossRef]
- Ren, J.-T.; Wang, Y.-S.; Chen, L.; Gao, L.-J.; Tian, W.-W.; Yuan, Z.-Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chem. Eng. J. 2020, 389, 124408. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, R. Defect engineering of two-dimensional materials for efficient electrocatalysis. J. Mater. 2018, 4, 95–107. [Google Scholar] [CrossRef]
- Chen, W.; Pei, J.; He, C.T.; Wan, J.; Ren, H.; Wang, Y.; Dong, J.; Wu, K.; Cheong, W.C.; Mao, J.; et al. Single Tungsten Atoms Supported on MOF-Derived N-Doped Carbon for Robust Electrochemical Hydrogen Evolution. Adv. Mater. 2018, 30, e1800396. [Google Scholar] [CrossRef]
- Wang, M.Q.; Ye, C.; Liu, H.; Xu, M.; Bao, S.J. Nanosized Metal Phosphides Embedded in Nitrogen-Doped Porous Carbon Nanofibers for Enhanced Hydrogen Evolution at All pH Values. Angew. Chem. Int. Ed. Engl. 2018, 57, 1963–1967. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, H.-Y.; Jiang, C.; Zhang, T.-H.; Zhan, R.; Li, X.; Li, J.-F.; Tian, J.-H.; Yang, R. NiCo Alloy Nanoparticles Decorated on N-Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. Adv. Funct. Mater. 2018, 28, 1705094. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Huang, L.B.; Liu, X.Z.; Zhang, Q.H.; He, C.; Wu, Z.Y.; Zhang, L.J.; Wu, J.; Yang, W.; et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Ren, P.; Deng, D.; Bao, X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl. 2015, 54, 2100–2104. [Google Scholar] [CrossRef]
- Zou, L.; Hou, C.C.; Wang, Q.; Wei, Y.S.; Liu, Z.; Qin, J.S.; Pang, H.; Xu, Q. A Honeycomb-Like Bulk Superstructure of Carbon Nanosheets for Electrocatalysis and Energy Storage. Angew. Chem. Int. Ed. Engl. 2020, 59, 19627–19632. [Google Scholar] [CrossRef]
- Liu, S.J.; Amiinu, I.S.; Liu, X.B.; Zhang, J.; Bao, M.J.; Meng, T.; Mu, S.C. Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc-air batteries. Chem. Eng. J. 2018, 342, 163–170. [Google Scholar] [CrossRef]
- Han, S.; Hu, X.; Wang, J.; Fang, X.; Zhu, Y. Novel Route to Fe-Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn-Air Battery. Adv. Energy Mater. 2018, 8, 1800955. [Google Scholar] [CrossRef]
- Li, T.; Luo, G.; Liu, K.; Li, X.; Sun, D.; Xu, L.; Li, Y.; Tang, Y. Encapsulation of Ni3Fe Nanoparticles in N-Doped Carbon Nanotube-Grafted Carbon Nanofibers as High-Efficiency Hydrogen Evolution Electrocatalysts. Adv. Funct. Mater. 2018, 28, 1805828. [Google Scholar] [CrossRef]
- Tong, M.; Wang, L.; Fu, H. Designed Synthesis and Catalytic Mechanisms of Non-Precious Metal Single-Atom Catalysts for Oxygen Reduction Reaction. Small Methods 2021, 5, e2100865. [Google Scholar] [CrossRef]
- Liu, J.; Xie, J.; Wang, R.; Liu, B.; Meng, X.; Xu, X.; Tang, B.; Cai, Z.; Zou, J. Interfacial electron modulation of Cu2O by Co3O4 embedded in hollow carbon cube skeleton for boosting oxygen reduction/revolution reactions. Chem. Eng. J. 2022, 450, 137961. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Q.; Zhang, S.; Li, G. The Vital Balance of Graphitization and Defect Engineering for Efficient Bifunctional Oxygen Electrocatalyst Based on N-doping Carbon/CNT Frameworks. Chemcatchem 2019, 11, 861–867. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Tian, B.; Ho, D.; Qin, J.; Hu, J.; Chen, Z.; Voiry, D.; Wang, Q.; Zeng, Z. Framework structure engineering of polymeric carbon nitrides and its recent applications. Prog. Mater. Sci. 2023, 133, 101056. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.; Chung, D.Y.; Yoo, J.M.; Lee, H.S.; Kim, M.J.; Mun, B.S.; Kwon, S.G.; Sung, Y.E.; Hyeon, T. Design Principle of Fe-N-C Electrocatalysts: How to Optimize Multimodal Porous Structures? J. Am. Chem. Soc. 2019, 141, 2035–2045. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Liu, X.; Li, H.; Peng, X.; Xi, D.; Luo, J. 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2019, 240, 193–200. [Google Scholar] [CrossRef]
- Deng, C.; Wu, K.-H.; Scott, J.; Zhu, S.; Amal, R.; Wang, D.-W. Ternary MnO/CoMn alloy@N-doped graphitic composites derived from a bi-metallic pigment as bi-functional electrocatalysts. J. Mater. Chem. A 2019, 7, 20649–20657. [Google Scholar] [CrossRef]
- Gupta, S.; Qiao, L.; Zhao, S.; Xu, H.; Lin, Y.; Devaguptapu, S.V.; Wang, X.; Swihart, M.T.; Wu, G. Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Template-Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Adv. Energy Mater. 2016, 6, 1601198. [Google Scholar] [CrossRef]
- Niu, W.; Li, L.; Liu, X.; Wang, N.; Liu, J.; Zhou, W.; Tang, Z.; Chen, S. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562. [Google Scholar] [CrossRef]
- Song, J.; Ren, Y.; Li, J.; Huang, X.; Cheng, F.; Tang, Y.; Wang, H. Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon 2018, 138, 300–308. [Google Scholar] [CrossRef]
- Kuang, M.; Wang, Q.; Han, P.; Zheng, G. Cu, Co-Embedded N-Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. Adv. Energy Mater. 2017, 7, 1700193. [Google Scholar] [CrossRef]
- Niu, J.; Geng, C.; Liu, X.; O’Mullane, A.P. Transformation of a new polyoxometalate into multi-metal active sites on ZIF-derived carbon nanotubes as bifunctional cathode catalyst and dendrite-free anode coating for Zn-air batteries. Chem. Eng. J. 2023, 468, 143607. [Google Scholar] [CrossRef]
- Weng, P.; Guo, Y.; Wu, K.; Wang, X.; Huang, G.-Q.; Lei, H.; Yuan, Y.; Lu, W.; Li, D. Design of Fe/Ni-doped N/S-rich carbon with advanced bifunctional electrocatalysis for Zn–air batteries. J. Mater. Chem. A 2023, 11, 12194–12201. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, D.; Chen, C.-J.; Zhang, Q.; Liu, R.-S.; Xia, Z.; Dai, L.; Amal, R.; Lu, X. Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597. [Google Scholar] [CrossRef]
- Lai, C.; Wang, J.; Lei, W.; Xuan, C.; Xiao, W.; Zhao, T.; Huang, T.; Chen, L.; Zhu, Y.; Wang, D. Restricting Growth of Ni3Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn-Air Battery. ACS Appl. Mater. Interfaces 2018, 10, 38093–38100. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Kang, T.; Liu, B.; Wang, P.; Li, H.; Yang, M. N-doped carbon nanotubes encapsulated with FeNi nanoparticles derived from defect-rich, molecule-doped 3D g-C3N4 as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. J. Mater. Chem. A 2022, 10, 9911–9921. [Google Scholar] [CrossRef]
- Yu, Y.; You, S.; Du, J.; Xing, Z.; Dai, Y.; Chen, H.; Cai, Z.; Ren, N.; Zou, J. ZIF-67-derived CoO (tetrahedral Co2+)@nitrogen-doped porous carbon protected by oxygen vacancies-enriched SnO2 as highly active catalyst for oxygen reduction and Pt co-catalyst for methanol oxidation. Appl. Catal. B Environ. 2019, 259, 118043. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Yu, B.; Hu, Y.; Wang, X.; Yang, D. 3D hollow Co-Fe-P nanoframes immobilized on N,P-doped CNT as an efficient electrocatalyst for overall water splitting. Nanoscale 2019, 11, 17031–17040. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yan, F.; Li, K.; Zhu, C.; Xie, Y.; Zhang, X.; Chen, Y. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts. J. Mater. Chem. A 2019, 7, 1083–1091. [Google Scholar] [CrossRef]
- Wang, J.; Ciucci, F. Boosting Bifunctional Oxygen Electrolysis for N-Doped Carbon via Bimetal Addition. Small 2017, 13, 1604103. [Google Scholar] [CrossRef]
- Tang, C.; Wang, B.; Wang, H.F.; Zhang, Q. Defect Engineering toward Atomic Co-Nx -C in Hierarchical Graphene for Rechargeable Flexible Solid Zn-Air Batteries. Adv. Mater. 2017, 29, 1703185. [Google Scholar] [CrossRef]
- Wang, R.; Liu, B.; You, S.; Li, Y.; Zhang, Y.; Wang, D.; Tang, B.; Sun, Y.; Zou, J. Three-dimensional Ni3Se4 flowers integrated with ultrathin carbon layer with strong electronic interactions for boosting oxygen reduction/evolution reactions. Chem. Eng. J. 2022, 430, 132720. [Google Scholar] [CrossRef]
- Yang, L.; Zeng, X.F.; Wang, D.; Cao, D.P. Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater. 2018, 12, 277–283. [Google Scholar] [CrossRef]
- Chen, K.; Kim, S.; Rajendiran, R.; Prabakar, K.; Li, G.Z.; Shi, Z.C.; Jeong, C.; Kang, J.; Li, O.L. Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. J. Colloid. Interface Sci. 2021, 582, 977–990. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L.; Xu, X.C.; Yang, B.B.; Cao, S.; Wang, X.Y.; Fu, X.D.; Shi, Y.T.; Yan, Y.; Song, X.D.; Hao, C. Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst. Electrochim. Acta 2020, 331, 135375. [Google Scholar] [CrossRef]
- Cao, F.; Yang, X.; Shen, C.; Li, X.; Wang, J.M.; Qin, G.W.; Li, S.; Pang, X.Y.; Li, G.Q. Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. J. Mater. Chem. A 2020, 8, 7245–7252. [Google Scholar] [CrossRef]
- Liu, P.T.; Gao, D.Q.; Xiao, W.; Ma, L.; Sun, K.; Xi, P.X.; Xue, D.S.; Wang, J. Self-powered water-splitting devices by core–shell NiFe@N-graphite-based Zn–air batteries. Adv. Funct. Mater. 2018, 28, 1706928. [Google Scholar] [CrossRef]
- Lei, H.; Wang, Z.L.; Yang, F.; Huang, X.Q.; Liu, J.H.; Liang, Y.Y.; Xie, J.P.; Javed, M.S.; Lu, X.H.; Tan, S.Z.; et al. NiFe nanoparticles embedded N-doped carbon nanotubes as high-efficient electrocatalysts for wearable solid-state Zn-air batteries. Nano Energy 2020, 68, 104293. [Google Scholar] [CrossRef]
- Cui, J.; Leng, Y.M.; Xiang, Z.H. FeNi co-doped electrocatalyst synthesized via binary ligand strategy as a bifunctional catalyst for Zn-air flow battery. Chem. Eng. Sci. 2022, 247, 117038. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Wang, Y.S.; Tian, W.W.; Gao, L.J.; Yuan, Z.Y. FeNi nanoalloys encapsulated in N-doped cnts tangled with n-doped carbon nanosheets as efficient multifunctional catalysts for overall water splitting and rechargeable Zn–air batteries. ACS Sustain. Chem. Eng. 2020, 8, 223–237. [Google Scholar] [CrossRef]
- Lai, C.L.; Fang, J.Y.; Liu, X.P.; Gong, M.X.; Zhao, T.H.; Shen, T.; Wang, K.L.; Jiang, K.; Wang, D.L. In situ coupling of NiFe nanoparticles with N-doped carbon nanofibers for Zn-air batteries driven water splitting. Appl. Catal. B Environ. 2021, 285, 119856. [Google Scholar] [CrossRef]
- Jiang, M.X.; Tan, Z.; Cao, M.H. A robust bifunctional electrocatalyst for rechargeable zinc-air batteries: NiFe nanoparticles encapsulated in nitrogen-doped carbon nanotubes. Int. J. Hydrogen Energ. 2021, 46, 15507–15516. [Google Scholar] [CrossRef]
- Wu, M.C.; Guo, B.K.; Nie, A.M.; Liu, R. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. J. Colloid. Interface Sci. 2020, 561, 585–592. [Google Scholar] [CrossRef]
- Zheng, X.J.; Cao, X.C.; Zeng, K.; Yan, J.; Sun, Z.; Ruemmeli, M.H.; Yang, R. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc-air batteries. Small 2021, 17, 2006183. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, G.F.; Chen, X.; Zhang, Q.; Sui, J.; Li, C.; Zhang, Y.; Hu, J.; Yu, J.; Yu, L.; et al. Developing nitrogen and Co/Fe/Ni multi-doped carbon nano-tubes as high-performance bifunctional catalyst for rechargeable zinc-air battery. J. Colloid. Interface Sci. 2021, 593, 204–213. [Google Scholar] [CrossRef] [PubMed]
Catalysts | Mass Loading (mg cm–2) | Open Circuit Potential (V) | Power Density (mW cm–2) | Durability (h) | References |
---|---|---|---|---|---|
FeNi@NC | 1.0 | 1.45 | 116 | 30 min/cycle for 232 cycles; 116 h | This work |
FeNi-NC | / | / | 80.8 | 23 h | [50] |
Fe-enriched-FeNi3/NC | 1.0 | 1.43 | 89 | 10 min/cycle for 100 cycles; 16.7 h | [51] |
FeNi/NC | 1.0 | / | 80.5 | / | [52] |
NiCoFe@N-CNFs | 1.0 | 1.32 | 147 | 20 min/cycle for 120 cycles; 40 h | [53] |
Fe0.5Ni0.5@N-GR | 2.0 | 1.482 | 85 | 20 min/cycle for 120 cycles; 40 h | [54] |
NiFe/N-CNT | 1.5 | 1.48 | 300.7 | 300 cycles; 100 h | [55] |
FeNi-N/C-1000 | 4.0 | 1.445 | 102 | 95 h | [56] |
FeNi@N-CNT/NCSs | 1.0 | 1.49 | 103 | 2 h/cycle for 30 cycles; 60 h | [57] |
NiFe/NCNF/CC | / | / | 140.1 | 700 cycles | [58] |
NiFe@NCNT | / | 1.48 | 360.1 | 5 min/cycle for 2400 cycles; 200 h | [59] |
1.5FeNi@ NCNT | / | 1.44 | 114 | 100 cycles | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, L.; Ren, Z.; Chen, X.; Zhang, D.; Xu, S. FeNi Confined in N-Doped Carbon as a Highly Efficient Bi-Functional Catalyst for Rechargeable Zn–Air Batteries. Inorganics 2023, 11, 300. https://doi.org/10.3390/inorganics11070300
Duan L, Ren Z, Chen X, Zhang D, Xu S. FeNi Confined in N-Doped Carbon as a Highly Efficient Bi-Functional Catalyst for Rechargeable Zn–Air Batteries. Inorganics. 2023; 11(7):300. https://doi.org/10.3390/inorganics11070300
Chicago/Turabian StyleDuan, Lei, Zhili Ren, Xiaoling Chen, Ding Zhang, and Shoudong Xu. 2023. "FeNi Confined in N-Doped Carbon as a Highly Efficient Bi-Functional Catalyst for Rechargeable Zn–Air Batteries" Inorganics 11, no. 7: 300. https://doi.org/10.3390/inorganics11070300
APA StyleDuan, L., Ren, Z., Chen, X., Zhang, D., & Xu, S. (2023). FeNi Confined in N-Doped Carbon as a Highly Efficient Bi-Functional Catalyst for Rechargeable Zn–Air Batteries. Inorganics, 11(7), 300. https://doi.org/10.3390/inorganics11070300