Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of Photocatalysts
3.2. Characterizations
3.3. Photocatalytic Degradation of TC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sandoval, J.L.; Friedlaender, A.; Addeo, A.; Weiss, G.J. Payments to key opinion leader physicians and drug sales of top pharmaceutical companies during the COVID-19 pandemic. medRxiv 2022. [Google Scholar] [CrossRef]
- Rameshwar, S.S.; Sivaprakash, B.; Rajamohan, N.; Mohamed, B.A.; Vo, D.-V.N. Remediation of tetracycline pollution using MXene and nano-zero-valent iron materials: A review. Environ. Chem. Lett. 2023, 21, 2995–3022. [Google Scholar] [CrossRef]
- Lu, S.; Liu, L.; Yang, Q.; Demissie, H.; Jiao, R.; An, G.; Wang, D. Removal characteristics and mechanism of microplastics and tetracycline composite pollutants by coagulation process. Sci. Total Environ. 2021, 786, 147508. [Google Scholar] [CrossRef]
- Lian, P.; Qin, A.; Liu, Z.; Ma, H.; Liao, L.; Zhang, K.; Li, N. Facile Synthesis to Porous TiO2 Nanostructures at Low Temperature for Efficient Visible-Light Degradation of Tetracycline. Nanomaterials 2024, 14, 943. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Dong, G.H.; Saeed, I.; Dong, T.T.; Xiao, C.Y. Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chin. J. Struct. Chem. 2024, 43, 100208. [Google Scholar] [CrossRef]
- Dong, D.; Wang, K.; Yi, M.; Liang, Y.; Muhammad, Y.; Wei, E.; Wei, Y.; Fujita, T. Preparation of TiO2 photocatalyst microspheres by geopolymer technology for the degradation of tetracycline. J. Clean. Prod. 2022, 339, 130734. [Google Scholar] [CrossRef]
- Bettini, S.; Pagano, R.; Valli, D.; Ingrosso, C.; Roeffaers, M.; Hofkens, J.; Giancane, G.; Valli, L. ZnO nanostructures based piezo-photocatalytic degradation enhancement of steroid hormones. Surf. Interfaces 2023, 36, 102581. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Zhou, Y.; Deng, Y.; Feng, C.; Xiong, S.; Huang, Y.; Peng, G.; Li, L. Unique g-C3N4/PDI-g-C3N4 homojunction with synergistic piezo-photocatalytic effect for aquatic contaminant control and H2O2 generation under visible light. Appl. Catal. B Environ. 2022, 303, 120929. [Google Scholar] [CrossRef]
- Jiang, Z.; Tan, X.; Xu, J.; Huang, Y. Piezoelectric-Induced Internal Electric Field in Bi2WO6 Nanoplates for Boosting the Photocatalytic Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2022, 5, 7588–7597. [Google Scholar] [CrossRef]
- Li, S.; Deng, C.; Karmaker, P.G.; Yang, K.; Wang, J.; Liu, W.; Yang, X. Yb-doped BiOBr for highly efficient photocatalytic degradation of tetracycline hydrochloride under visible light irradiation. Mater. Res. Bull. 2024, 178, 112895. [Google Scholar] [CrossRef]
- Qian, X.; Ma, Y.; Xia, X.; Xia, J.; Ye, J.; He, G.; Chen, H. Recent progress on Bi4O5Br2-based photocatalysts for environmental remediation and energy conversion. Catal. Sci. Technol. 2024, 14, 1085–1104. [Google Scholar] [CrossRef]
- Yue, J.-Y.; Pan, Z.-X.; Yang, P.; Tang, B. Bi4O5Br2/COF S-Scheme Heterojunctions for Boosting H2O2 Photoproduction under Air and Pure Water. ACS Mater. Lett. 2024, 6, 3932–3940. [Google Scholar] [CrossRef]
- Wu, Z.H.; Shen, J.; Ma, N.; Li, Z.F.; Wu, M.; Xu, D.F.; Zhang, S.Y.; Feng, W.H.; Zhu, Y.F. Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Appl. Catal. B Environ. 2021, 286, 119937. [Google Scholar] [CrossRef]
- Zhao, L.; Fang, W.; Meng, X.; Wang, L.; Bai, H.; Li, C. In-situ synthesis of metal Bi to improve the stability of oxygen vacancies and enhance the photocatalytic activity of Bi4O5Br2 in H2 evolution. J. Alloys Compd. 2022, 910, 164883. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, X.; Wang, C.; Wang, Y.; Tan, Z.; Li, J.; Xi, B. Photocatalytic degradation of rhodamine B using Bi4O5Br2-doped ZSM-5. Mater. Chem. Phys. 2022, 278, 125697. [Google Scholar] [CrossRef]
- Jin, X.; Cao, J.; Wang, H.; Lv, C.; Xie, H.; Su, F.; Li, X.; Sun, R.; Shi, S.; Dang, M.; et al. Realizing improved CO2 photoreduction in Z-scheme Bi4O5Br2/AgBr heterostructure. Appl. Surf. Sci. 2022, 598, 153758. [Google Scholar] [CrossRef]
- Liu, D.; Hua, J.; Zhang, W.; Wei, K.; Song, S.; Wang, Q.; Song, Z.; Han, H.; Ma, C.; Feng, S. Efficient photocatalytic CO2 reduction achieved by constructing Bi4O5Br2/Bi-MOF Z-scheme heterojunction. Colloids Surf. A Physicochem. Eng. Asp. 2024, 695, 134101. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Z.; Shang, Y.; Lv, C.; Zhang, X.; Li, F.; Huang, Q.; Liu, X.; Liu, W.; Zhao, L.; et al. Boosting Carrier Separation on a BiOBr/Bi4O5Br2 Direct Z-Scheme Heterojunction for Superior Photocatalytic Nitrogen Fixation. ACS Catal. 2024, 14, 5779–5787. [Google Scholar] [CrossRef]
- Li, Y.; Han, D.; Wang, Z.; Gu, F. Double-Solvent-Induced Derivatization of Bi-MOF to Vacancy-Rich Bi4O5Br2: Toward Efficient Photocatalytic Degradation of Ciprofloxacin in Water and HCHO Gas. Acs Appl. Mater. Inter. 2024, 16, 7080–7096. [Google Scholar] [CrossRef]
- Cong, X.; Li, A.; Guo, F.; Qin, H.; Zhang, X.; Wang, W.; Xu, W. Construction of CdS@g–C3N4 heterojunction photocatalyst for highly efficient degradation of gaseous toluene. Sci. Total Environ. 2024, 913, 169777. [Google Scholar] [CrossRef]
- Ji, M.; Di, J.; Ge, Y.; Xia, J.; Li, H. 2D-2D stacking of graphene-like g-C3N4/Ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal. Appl. Surf. Sci. 2017, 413, 372–380. [Google Scholar] [CrossRef]
- Yuan, L.; Weng, B.; Colmenares, J.C.; Sun, Y.; Xu, Y.J. Multichannel Charge Transfer and Mechanistic Insight in Metal Decorated 2D–2D Bi2WO6–TiO2 Cascade with Enhanced Photocatalytic Performance. Small 2017, 13, 1702253. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, S.; Zhang, C.; Dong, C.; Li, R.; Li, B.; Wang, Q.; Ding, Y. Boosting Hydrogen Evolution Performance of a CdS-Based Photocatalyst: In Situ Transition from Type I to Type II Heterojunction during Photocatalysis. ACS Catal. 2022, 12, 10115–10126. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, S.; Gao, J.; Zhang, F.; Liu, C.; Wang, Q.; Hojamberdiev, M. Constructing a 2D/2D Bi2O2CO3/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Appl. Surf. Sci. 2019, 493, 913–925. [Google Scholar] [CrossRef]
- Pan, Q.; Wang, J.; Chen, H.; Yin, P.; Cheng, Q.; Xiao, Z.; Zhao, Y.-z.; Liu, H.-B. Piezo-photocatalysis of Sr-doped Bi4O5Br2/Bi2MoO6 composite nanofibers to simultaneously remove inorganic and organic contaminants. J. Water Process Eng. 2023, 56, 104330. [Google Scholar] [CrossRef]
- Ma, T.; Yang, C.; Guo, L.; Soomro, R.A.; Wang, D.; Xu, B.; Fu, F. Refining electronic properties of Bi2MoO6 by In-doping for boosting overall nitrogen fixation via relay catalysis. Appl. Catal. B Environ. 2023, 330, 122643. [Google Scholar] [CrossRef]
- Huang, J.; Kang, Y.; Liu, J.A.; Chen, R.; Xie, T.; Liu, Z.; Xu, X.; Tian, H.; Yin, L.; Fan, F.; et al. Selective Exposure of Robust Perovskite Layer of Aurivillius-Type Compounds for Stable Photocatalytic Overall Water Splitting. Adv. Sci. 2023, 10, 2302206. [Google Scholar] [CrossRef]
- Li, C.; Gu, S.; Xiao, Y.; Lin, X.; Lin, X.; Zhao, X.; Nan, J.; Xiao, X. Single-crystal oxygen-rich bismuth oxybromide nanosheets with highly exposed defective {10–1} facets for the selective oxidation of toluene under blue LED irradiation. J. Colloid Interface Sci. 2024, 668, 426–436. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Zhang, B.; Liu, T.; Chen, Z. Facet-dependent Bi2MoO6 for highly efficient photocatalytic selective oxidation of sp3 C–H bonds using O2 as an oxidant. Catal. Sci. Technol. 2023, 13, 1996–2000. [Google Scholar] [CrossRef]
- Li, S.; Chen, F.; An, Q.; Tang, R.; Huang, H. Triggering Overall Crystal Polarization by Octahedron Elongation Distortion for Highly Boosted and Selective Aerobic Photo-Oxidation. Adv. Funct. Mater. 2024, 2409035. [Google Scholar] [CrossRef]
- Jing, J.; Qi, K.; Dong, G.; Wang, M.; Ho, W. The photocatalytic ·OH production activity of g-C3N4 improved by the introduction of NO. Chin. Chem. Lett. 2022, 33, 4715–4718. [Google Scholar] [CrossRef]
- Fan, J.; Shi, L.; Ge, H.; Liu, J.; Deng, X.; Li, Z.; Liang, Q. Regulating the Oxygen Vacancy on Bi2MoO6/Co3O4 Core-Shell Nanocage Enables Highly Selective CO2 Photoreduction to CH4. Adv. Funct. Mater. 2024, 2412078. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, S.; Li, J.; Guo, D.; Fu, S.; Zhang, D.; Yang, X.; Sui, G. Oxygen Vacancy Engineering and Constructing Built-In Electric Field in Fe-g-C3N4/Bi2MoO6 Z-Scheme Heterojunction for Boosting Photo-Fenton Catalytic Degradation Performance of Tetracycline. Small 2024, 2406125. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ng, Y.H.; Wen, X.; Chung, H.Y.; Wong, R.J.; Du, Y.; Dou, S.X.; Amal, R.; Scott, J. Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636–644. [Google Scholar] [CrossRef]
- Feng, R.; Guo, M.; Yang, Z.; Qiu, J.; Wang, Z.; Zhao, Y. 0D/2D Bi2MoO6 quantum dots/rGO heterojunction boosting full solar spectrum-driven photothermal catalytic CO2 reduction to solar fuels. Carbon 2024, 224, 119079. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Yuan, S.; Li, X.; Zhang, J.; Hu, X.; Lin, H.; Wu, Y.; He, Y. One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2023, 638, 427–438. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Q.; Li, W.; Luo, L.; Du, P. Tailoring of visible light driven photocatalytic activities of Bi2MoO6 flower-like microspheres via synergistic effect of doping and surface Plasmon resonance. Chem. Eng. J. 2023, 475, 14619. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Guo, X.; Zhao, Y.; Wang, X.; Xiao, R.; Zhan, J.; Liu, F.; Zhang, J. Efficient HgO catalytic removal by direct S-scheme heterostructure of two-dimensional Bi2MoO6 (200)/g-C3N4 nanosheets under visible light. J. Environ. Manag. 2023, 347, 119125. [Google Scholar] [CrossRef]
- He, J.; Lin, J.; Zhang, Y.; Hu, Y.; Huang, Q.; Zhou, G.; Li, W.; Hu, J.; Hu, N.; Yang, Z. Interfacial Mo-S bond-reinforced hierarchical S-scheme heterostructure of Bi2MoO6@ZnIn2S4 for highly-selective and efficient CO2 photoreduction into CO. Chem. Eng. J. 2024, 480, 148036. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Zhang, Y.; Tian, N. One pot hydrothermal synthesis of a novel BiIO4/Bi2MoO6 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity for rhodamine B degradation and photocurrent generation. J. Alloys. Compd. 2015, 619, 807–811. [Google Scholar] [CrossRef]
- Yao, Z.; Sun, H.; Xiao, S.; Hu, Y.; Liu, X.; Zhang, Y. Synergetic piezo-photocatalytic effect in a Bi2MoO6/BiOBr composite for decomposing organic pollutants. Appl. Surf. Sci. 2021, 560, 150037. [Google Scholar] [CrossRef]
- Chachvalvutikul, A.; Luangwanta, T.; Kaowphong, S. Double Z-scheme FeVO4/Bi4O5Br2/BiOBr ternary heterojunction photocatalyst for simultaneous photocatalytic removal of hexavalent chromium and rhodamine B. J. Colloid Interface Sci. 2021, 603, 738–757. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Cao, W.; Zhu, Y.; Teng, Q.; Peng, L.; Jiang, C.; Feng, C.; Wang, Y. NaOH-induced formation of 3D flower-sphere BiOBr/Bi4O5Br2 with proper-oxygen vacancies via in-situ self-template phase transformation method for antibiotic photodegradation. Sci. Total Environ. 2020, 715, 136809. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, Y.; Yang, X.; Li, Z.; Zhang, Y. Enhanced Photo-Assisted Fenton Degradation of Antibiotics over Iron-Doped Bi-Rich Bismuth Oxybromide Photocatalyst. Nanomaterials 2022, 13, 188. [Google Scholar] [CrossRef]
- Li, D.; Zhang, W.; Niu, Z.; Zhang, Y. Improvement of photocatalytic activity of BiOBr and BiOBr/ZnO under visible-light irradiation by short-time low temperature plasma treatment. J. Alloys Compd. 2022, 924, 166608. [Google Scholar] [CrossRef]
- Cai, Z.; Huang, Y.; Ji, H.; Liu, W.; Fu, J.; Sun, X. Type-II surface heterojunction of bismuth-rich Bi4O5Br2 on nitrogen-rich g-C3N5 nanosheets for efficient photocatalytic degradation of antibiotics. Sep. Purif. Technol. 2022, 280, 119772. [Google Scholar] [CrossRef]
- Yang, W.; Sun, K.; Wan, J.; Ma, Y.-A.; Liu, J.; Zhu, B.; Liu, L.; Fu, F. Boosting holes generation and O2 activation by bifunctional NiCoP modified Bi4O5Br2 for efficient photocatalytic aerobic oxidation. Appl. Catal. B Environ. 2023, 320, 121978. [Google Scholar] [CrossRef]
- Dai, W.; Long, J.; Yang, L.; Zhang, S.; Xu, Y.; Luo, X.; Zou, J.; Luo, S. Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons. J. Energy Chem. 2021, 61, 281–289. [Google Scholar] [CrossRef]
- Liu, F.; Su, D.; Liu, W.; Liu, B.; Liu, C.; Wang, H.; Wang, M. Polar solvent induced in-situ self-assembly and oxygen vacancies on Bi2MoO6 for enhanced photocatalytic degradation of tetracycline. Nano Res. 2024, 17, 4951–4960. [Google Scholar] [CrossRef]
- Guo, J.; Shi, L.; Zhao, J.; Wang, Y.; Tang, K.; Zhang, W.; Xie, C.; Yuan, X. Enhanced visible-light photocatalytic activity of Bi2MoO6 nanoplates with heterogeneous Bi2MoO6-x@Bi2MoO6 core-shell structure. Appl. Catal. B-Environ. 2018, 224, 692–704. [Google Scholar] [CrossRef]
- Mao, D.; Ding, S.; Meng, L.; Dai, Y.; Sun, C.; Yang, S.; He, H. One-pot microemulsion-mediated synthesis of Bi-rich Bi4O5Br2 with controllable morphologies and excellent visible-light photocatalytic removal of pollutants. Appl. Catal. B-Environ. 2017, 207, 153–165. [Google Scholar] [CrossRef]
- Idris, A.M.; Liu, T.; Hussain Shah, J.; Malik, A.S.; Zhao, D.; Han, H.; Li, C. Sr2NiWO6 Double Perovskite Oxide as a Novel Visible-Light-Responsive Water Oxidation Photocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 25938–25948. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Ma, Y.; Arif, M.; Xia, J.; He, G.; Chen, H. Construction of 2D/2D Bi4O5Br2/Bi2WO6 Z-scheme heterojunction for highly efficient photodegradation of ciprofloxacin under visible light. Sep. Purif. Technol. 2023, 316, 123794. [Google Scholar] [CrossRef]
- Jin, X.; Lv, C.; Zhou, X.; Xie, H.; Sun, S.; Liu, Y.; Meng, Q.; Chen, G. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy 2019, 64, 103955. [Google Scholar] [CrossRef]
- Feng, S.; Chen, T.; Liu, Z.; Shi, J.; Yue, X.; Li, Y. Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Sci. Total Environ. 2020, 704, 135404. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, X.-F.; Zhang, K.; Xia, L.; Liu, S.; Zhang, W.; Du, Y.; Tang, H.; Peng, Y.; Li, Z.; et al. Atomically dispersed Co-Mn dual sites anchored in photoresponsive carbon nitride mediated peroxymonosulfate activation for elimination of petroleum hydrocarbon in water. Appl. Catal. B Environ. 2024, 343, 123581. [Google Scholar] [CrossRef]
- Shen, H.; Zhan, X.; Hong, S.; Xu, L.; Yang, C.; Robertson, A.W.; Hao, L.; Fu, F.; Sun, Z. Ultrafine MoOx clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res. 2023, 16, 10713–10723. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Miao, W.; Zhang, X.; Shi, Y.; Tang, Z.; Shi, H. Insight into the pathway, improvement of performance and photocatalytic mechanism of active carbon/Bi4O5Br2 composite for cefixime and rhodamine B removal. J. Photochem. Photobiol. A Chem. 2023, 444, 114892. [Google Scholar] [CrossRef]
- Xia, D.; Shen, Z.; Huang, G.; Wang, W.; Yu, J.C.; Wong, P.K. Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for “Green” Bacterial Inactivation under Visible Light. Environ. Sci. Technol. 2015, 49, 6264–6273. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Yu, J.C. Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere 2021, 278, 130376. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, F.; Sheng, G.; Yang, X.; Zhang, Y. Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics. Inorganics 2024, 12, 289. https://doi.org/10.3390/inorganics12110289
Kang F, Sheng G, Yang X, Zhang Y. Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics. Inorganics. 2024; 12(11):289. https://doi.org/10.3390/inorganics12110289
Chicago/Turabian StyleKang, Fengshu, Gaidong Sheng, Xiaolong Yang, and Yan Zhang. 2024. "Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics" Inorganics 12, no. 11: 289. https://doi.org/10.3390/inorganics12110289
APA StyleKang, F., Sheng, G., Yang, X., & Zhang, Y. (2024). Fabrication of Two-Dimensional Bi2MoO6 Nanosheet-Decorated Bi2MoO6/Bi4O5Br2 Type II Heterojunction and the Enhanced Photocatalytic Degradation of Antibiotics. Inorganics, 12(11), 289. https://doi.org/10.3390/inorganics12110289