Use of Chitosan and Chitosan–Magnetite Spheres for Arsenic Groundwater Removal: Factorial Designs as Tools to Optimize the Efficiency of Removal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Groundwater Analysis
2.2. Sorbent Characterization
2.2.1. pH Value at pHzc
2.2.2. Iron Percentage Determination for M-Q Spheres
2.2.3. XRD Spectroscopy
2.3. As Quantification
2.4. Optimization of the As(V) Sorption Process—Experimental Designs
3. Materials and Methods
3.1. Reagents
3.1.1. Inorganic Reagents
3.1.2. Organic Reagents
3.1.3. Control of Physical–Chemical Parameters
3.2. Sorbent Synthesis
3.2.1. Synthesis of Chitosan (Q) Spheres
3.2.2. Magnetite (M) Synthesis
3.2.3. Synthesis of Magnetite–Chitosan (M-Q) Spheres
3.3. Characterization of Sorbent Material
3.3.1. Determination of Zero-Charge pH (pHzc)
3.3.2. Iron Percentage Determination for M-Q Spheres
3.3.3. Powder X-Ray Diffraction (XRD)
3.4. As(V) Quantification
3.5. Experimental Design Applied to As(V) Sorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benítez, E.M.L.; Verdecia, G.M.; Castell, M.A.P. Escasez y contaminación del agua, realidades del siglo XXI. Rev. 16 Abril 2021, 60, 854. [Google Scholar]
- Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Loomis, D.; Guha, N.; Hall, A.L.; Straif, K. Identifying occupational carcinogens: An update from the IARC Monographs. Occup. Environ. Med. 2018, 75, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Charles, O. Abernathy, David J. Thomas, Rebecca L. Calderon, Health Effects and Risk Assessment of Arsenic. J. Nutr. 2003, 133, 1536S–1538S. [Google Scholar] [CrossRef]
- O’reilly, J.; Watts, M.; Shaw, R.; Marcilla, A.; Ward, N. Arsenic contamination of natural waters in San Juan and La Pampa, Argentina. Environ. Geochem. Health 2010, 32, 491–515. [Google Scholar] [CrossRef]
- Litter, M. Arsénico en Agua; UNSAM Edita: Buenos Aires, Argentina, 2018. [Google Scholar]
- Marchetti, M.D.; Tomac, A.; Perez, S. Perfil de riesgo para la inocuidad de alimentos: Presencia de arsénico en Argentina. Rev. Argent. Salud Pública 2021, 13, 191–200. [Google Scholar]
- UNICEF. Arsenic Primer: Guidance on the Investigation & Mitigation of Arsenic Contamination; UNICEF Water, Sanitation and Hygiene Section and WHO Water, Sanitation and Hygiene and Health Unit, United Nations Children’s Fund (UNICEF): New York, NY, USA, 2018. [Google Scholar]
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Lampert, D.A. De la Tabla Periódica a la Mesa: Un Nuevo Mapeo del Arsénico en Agua en la Provincia de Buenos Aires; Universidad de Buenos Aires: Buenos Aires, Argentina, 2022. [Google Scholar]
- Bundschuh, J.; Pérez Carrera, A.; Litter, M.I. Distribución del Arsénico en la Región Ibérica e Iberoamericana; Editorial Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo: Buenos Aires, Argentine, 2008; ISBN 978-84-96023-61-1. [Google Scholar]
- Arsénico en Agua; Red de Seguridad Alimentaria (RSA-CONICET), “Informe final”: Buenos Aires, Argentina, 2018.
- Corey, G.; Tomasini, R.; Pagura, J. Estudio Epidemiológico de la Exposición al Arsénico a Través del Consumo de Agua; Gobierno de Santa Fe: Santa Fe, Argentina, 2005. [Google Scholar]
- ENRRES, r. 0465-Pautas-Diferenciales-Prestadores-Fuera-del-Área-de-ASSA.pdf. 2016. Available online: http://www.enress.gov.ar/wp-content/uploads/2016/08/0465-Pautas-diferenciales-prestadores-fuera-del-%C3%A1rea-de-ASSA.pdf (accessed on 30 September 2024).
- Bardach, A.E.; Ciapponi, A.; Soto, N.; Chaparro, M.R.; Calderon, M.; Briatore, A.; Cadoppi, N.; Tassara, R.; Litter, M.I. Epidemiology of chronic disease related to arsenic in Argentina: A systematic review. Sci. Total Environ. 2015, 538, 802–816. [Google Scholar] [CrossRef]
- Sardar, M.; Manna, M.; Maharana, M.; Sen, S. Remediation of dyes from industrial wastewater using low-cost adsorbents. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water; Springer: Cham, Switzerland, 2021; pp. 377–403. [Google Scholar]
- Pio, I.; Scarlino, A.; Bloise, E.; Mele, G.; Santoro, O.; Pastore, T.; Santoro, D. Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes. Sep. Purif. Technol. 2015, 147, 284–291. [Google Scholar] [CrossRef]
- Nur, T.; Loganathan, P.; Ahmed, M.B.; Johir, M.A.H.; Nguyen, T.V.; Vigneswaran, S. Removing arsenic from water by coprecipitation with iron: Effect of arsenic and iron concentrations and adsorbent incorporation. Chemosphere 2019, 226, 431–438. [Google Scholar] [CrossRef]
- Ortega, A.; Oliva, I.; Contreras, K.E.; González, I.; Cruz-Díaz, M.R.; Rivero, E.P. Arsenic removal from water by hybrid electro-regenerated anion exchange resin/electrodialysis process. Sep. Purif. Technol. 2017, 184, 319–326. [Google Scholar] [CrossRef]
- Pessoa-Lopes, M.; Crespo, J.G.; Velizarov, S. Arsenate removal from sulphate-containing water streams by an ion-exchange membrane process. Sep. Purif. Technol. 2016, 166, 125–134. [Google Scholar] [CrossRef]
- Moreira, V.; Lebron, Y.; Santos, L.; De Paula, E.C.; Amaral, M. Arsenic contamination, effects and remediation techniques: A special look onto membrane separation processes. Process Saf. Environ. Prot. 2021, 148, 604–623. [Google Scholar] [CrossRef]
- Abanto Pérez, J.A.; Reyes Benites, P.N. Prototipo de Biofiltro con Arcilla, Cascara de Arroz y NaOh para Remoción del Arsénico del Río Huandoval, Pallasca, Ancash–2021. 2021. Available online: https://hdl.handle.net/20.500.12692/73609 (accessed on 30 September 2024).
- Cuizano, N.A.; Llanos, B.P.; Navarro, A.E. Aplicaciones ambientales de la adsorción mediante biopolímeros naturales: Parte 1-Compuestos fenólicos. Rev. Soc. Química Perú 2009, 75, 488–494. [Google Scholar]
- García, J.; Sotomayor, N.J.G.; Becerra, J.S.C. Residuos orgánicos agroindustriales empleados para la remoción de arsénico en soluciones acuosas. Encuentro Int. Educ. En Ing. 2023. [Google Scholar] [CrossRef]
- Paredes Ramirez, E.O.; Segura Acosta, L.M. Estudio de la Remoción de Metales Pesados en Aguas Contaminadas de Ríos Utilizando Carbón Activado Vegetal. 2021. Available online: https://hdl.handle.net/11537/28778 (accessed on 30 September 2024).
- Silva Lizama, P.B. Preparación y Evaluación de Bentonita Intercalado con Óxido de Hierro para la Remoción de Arsénico en Aguas Contaminadas. Ph.D. Thesis, Universidad de Chile, Santiago, Chile, 2023. [Google Scholar]
- Wang, W.; Zhao, Y.; Bai, H.; Zhang, T.; Ibarra-Galvan, V.; Song, S. Methylene blue removal from water using the hydrogel beads of poly (vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr. Polym. 2018, 198, 518–528. [Google Scholar] [CrossRef]
- Martínez-Cabanas, M. Desarrollo de Materiales Híbridos para la Eliminación de Arsénico de Medios Acuosos. Ph.D. Thesis, Universidade da Coruña, A Coruña, Spain, 2017. [Google Scholar]
- Huo, J.-b.; Yu, G.; Wang, J. Magnetic zeolitic imidazolate frameworks composite as an efficient adsorbent for arsenic removal from aqueous solution. J. Hazard. Mater. 2021, 412, 125298. [Google Scholar] [CrossRef]
- Liu, B.; Kim, K.-H.; Kumar, V.; Kim, S. A review of functional sorbents for adsorptive removal of arsenic ions in aqueous systems. J. Hazard. Mater. 2020, 388, 121815. [Google Scholar] [CrossRef]
- Bakshi, S.; Banik, C.; Rathke, S.J.; Laird, D.A. Arsenic sorption on zero-valent iron-biochar complexes. Water Res. 2018, 137, 153–163. [Google Scholar] [CrossRef]
- Upadhyay, U.; Sreedhar, I.; Singh, S.A.; Patel, C.M.; Anitha, K. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr. Polym. 2021, 251, 117000. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Naushad, M.; Chaudhry, S.A. Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review. Process Saf. Environ. Prot. 2019, 126, 60–97. [Google Scholar] [CrossRef]
- Wang, C.; Luan, J.; Wu, C. Metal-organic frameworks for aquatic arsenic removal. Water Res. 2019, 158, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, F.; Anbia, M.; Sepehrian, M. Recent advances in removal of inorganic anions from water by chitosan-based composites: A comprehensive review. Carbohydr. Polym. 2023, 320, 121230. [Google Scholar] [CrossRef]
- Mora, B.P.; Bellú, S.; Mangiameli, M.F.; Frascaroli, M.I.; González, J.C. Response surface methodology and optimization of arsenic continuous sorption process from contaminated water using chitosan. J. Water Process Eng. 2019, 32, 100913. [Google Scholar] [CrossRef]
- Pérez Mora, B.E.; Bellú, S.E.; Mangiameli, M.F.; García, S.I.; González, J.C. Optimization of continuous arsenic biosorption present in natural contaminated groundwater. J. Chem. Technol. Biotechnol. 2019, 94, 547–555. [Google Scholar] [CrossRef]
- Batistelli, M.; Mora, B.P.; Mangiameli, F.; Mamana, N.; Lopez, G.; Goddio, M.F.; Bellú, S.; González, J.C. A continuous method for arsenic removal from groundwater using hybrid biopolymer-iron-nanoaggregates: Improvement through factorial designs. J. Chem. Technol. Biotechnol. 2021, 96, 923–929. [Google Scholar] [CrossRef]
- Batistelli, M.; Bultri, J.; Hernandez Trespalacios, M.; Mangiameli, M.F.; Gribaudo, L.; Bellú, S.; Frascaroli, M.I.; González, J.C. Elimination of Arsenic Using Sorbents Derived from Chitosan and Iron Oxides, Applying Factorial Designs. Inorganics 2023, 11, 428. [Google Scholar] [CrossRef]
- CÓDIGO ALIMENTARIO ARGENTINO. Capítulo XII. Bebidas Hídricas, Agua y Agua Gasificada; Agua Potable. Artículo 982. Available online: https://www.argentina.gob.ar/sites/default/files/capitulo_xii_aguas_actualiz_2024-04.pdf (accessed on 30 September 2024).
- Molinari, A.; Bos, R.; Latorre, C.; Bedoya, C.; del Rosario Navia, M. Los Reguladores y la Implementación de los Derechos Humanos al Agua y Saneamiento en América Latina y el Caribe; Documento IDB-DP-874; BID: Washington, DC, USA, 2021. [Google Scholar]
- Argentina.gob.ar. 540-Limite de Arsenico 2003. Available online: https://www.argentina.gob.ar/normativa/recurso/86181/dto202-2003-61/htm (accessed on 30 September 2024).
- Sibi Srinivasan, S.S.; Pragathiswaran Chelliah, P.C.; Venkatesan Srinivasan, V.S.; Stantley, A.; Kullagounder Subramani, K.S. Chitosan and reinforced Chitosan films for the removal of Cr (VI) heavy metal from synthetic aqueous solution. Orient. J. Chem. 2016, 32, 671–680. [Google Scholar] [CrossRef]
- Waseda, Y.; Matsubara, E.; Shinoda, K. X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Reventós, M.M.; Rius, J.; Amigó, J.M. Mineralogy and geology: The role of crystallography since the discovery of X-ray diffraction in 1912. Rev. Soc. Geológica España 2012, 25, 133–143. [Google Scholar]
- Nawrocka, A.; Durkalec, M.; Michalski, M.; Posyniak, A. Simple and reliable determination of total arsenic and its species in seafood by ICP-MS and HPLC-ICP-MS. Food Chem. 2022, 379, 132045. [Google Scholar] [CrossRef]
- Silver Diethyldithiocarbamate Method. In Standart Method for the Examination of the Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Chaudhuri, P.P. Groundwater Arsenic Remediation: Treatment Technology and Scale UP; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Sulfate, 4500-SO42-, Turbidimetric Method. In Standart Method for the Examination of the Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- Phosphorous, 4500-P, Ascorbic Acid Reduction Method. In Standart Method for the Examination of the Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- Silica, 4500-SiO2, Ammonium Molibdosilicate Method. In Standart Method for the Examination of the Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- Krom, M.D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- NITROGEN (NITRITE), 4500-NO2-, Clorimetirc Method. In Standart Method for the Examination of the Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- Fluoride, 4500-F-, SPADNS. In Standart Method for the Examination of the Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017.
- Standart Method for the Examination of the Water and Wastewater, 18th ed.; American Public Health Association: Washington, DC, USA, 1995.
- Kolthoff, I.S.E.B.; Meehan, E.J.; Bruckenstein, S. Analisi Quimico Cuantitativo, Quinta Edicion ed.; NIGAR LIB. EDIT. S.R.L.: Buenos Aires, Argentina, 1979. [Google Scholar]
- Bertoni, F.A.; González, J.C.; García, S.I.; Sala, L.F.; Bellú, S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr. Polym. 2018, 180, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Legodi, M.A.; de Waal, D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dye. Pigment. 2007, 74, 161–168. [Google Scholar] [CrossRef]
- De Cuyper, M.; Müller, P.; Lueken, H.; Hodenius, M. Synthesis of magnetic Fe3O4 particles covered with a modifiable phospholipid coat. J. Phys. Condens. Matter 2003, 15, S1425. [Google Scholar] [CrossRef]
- Mular, A.; Roberts, R. A simplified method to determine isoelectric points of oxides. Can. Min. Metall. Bull. 1966, 59, 1329. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater -3500-Fe IRON; American Public Health Association: Washington, DC, USA, 1926; Volume 6. [Google Scholar]
- Montgomery, D.C. Diseño y Análisis de Experimentos; Ed.; Ciudad de México, Mexico. Limusa Wiley: Ciudad de México, Mexico, 2007; Volume 2, Available online: https://dspace.scz.ucb.edu.bo/dspace/bitstream/123456789/30561/1/14559.pdf (accessed on 30 September 2024).
Analyte | Sample (mg/L) | Limit CCA (mg/L) | Method |
---|---|---|---|
pH | 7.8 1 | 6.5–8.5 1 | Potentiometric |
Total dissolved solids | 11,392.0 | 300–6000 | Gravimetric |
Nitrates | 16.0 | 45.0 | Selective electrode |
Nitrites | 0.003 | 0.10 | Colorimetric |
Fluoride | 2.0 | 1.5 | Colorimetric |
Ammonia | ND | 0.2 | Colorimetric |
Sulfates | 240.7 | 400.0 | Turbidimetric |
Phosphates | 2.2 × 10−3 | 1.5 | Colorimetric |
Silicates | 41.6 | 10.0–30.0 | Colorimetric |
Conductivity | 12.1 2 | *** | Conductimetric |
Hardness | 1125 3 | 51 3 | Titrimeric |
As (total) | 0.015 | 0.01 | Colorimetric |
M-Q Spheres | Q Spheres | ||||||
---|---|---|---|---|---|---|---|
Sorbent Mass (A) | Contact Time (B) | pH (C) | As(V) Removal Percentage | Sorbent Mass (A) | Contact Time (B) | pH (C) | As(V) Removal Percentage |
g | min | pH | % | g | min | pH | % |
0.625 | 80.0 | 6.5 | 63.4 | 0.426 | 80.0 | 4.0 | 5.4 |
0.340 | 80.0 | 9.0 | 45.7 | 0.426 | 80.0 | 6.5 | 15.5 |
0.340 | 80.0 | 6.5 | 69.1 | 0.213 | 120.0 | 8.0 | 17.2 |
0.510 | 120.0 | 8.0 | 52.8 | 0.426 | 80.0 | 6.5 | 15.8 |
0.340 | 12.7 | 6.5 | 35.5 | 0.426 | 13.0 | 6.5 | 16.2 |
0.170 | 40.0 | 8.0 | 37.4 | 0.784 | 80.0 | 6.5 | 33.0 |
0.170 | 40.0 | 5.0 | 30.9 | 0.639 | 40.0 | 8.0 | 22.2 |
0.340 | 80.0 | 4.0 | 65.2 | 0.213 | 120.0 | 5.0 | 29.0 |
0.510 | 40.0 | 5.0 | 74.0 | 0.068 | 80.0 | 6.5 | 13.2 |
0.510 | 120.0 | 5.0 | 78.8 | 0.639 | 40.0 | 5.0 | 16.3 |
0.340 | 80.0 | 6.5 | 75.5 | 0.426 | 80.0 | 9.0 | 2.3 |
0.340 | 80.0 | 6.5 | 71.0 | 0.213 | 40.0 | 5.0 | 3.0 |
0.340 | 80.0 | 6.5 | 73.6 | 0.426 | 80.0 | 6.5 | 16.2 |
0.170 | 120.0 | 5.0 | 28.0 | 0.639 | 120.0 | 8.0 | 29.5 |
0.510 | 40.0 | 8.0 | 34.3 | 0.639 | 120.0 | 5.0 | 30.6 |
0.054 | 80.0 | 6.5 | 23.6 | 0.426 | 80.0 | 6.5 | 17.0 |
0.170 | 120.0 | 8.0 | 45.4 | 0.426 | 147.0 | 6.5 | 40.8 |
0.340 | 147.3 | 6.5 | 50.1 | 0.213 | 40.0 | 8.0 | 2.5 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Q-M | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Q |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | 5831.31 | 9 | 647.92 | 121.36 | <0.0001 | S | 2085.61 | 9 | 231.73 | 425.16 | <0.0001 | S |
A—sorbent mass | 1989.16 | 1 | 1989.16 | 372.57 | <0.0001 | 146.71 | 1 | 146.71 | 269.17 | <0.0001 | ||
B—time | 205.34 | 1 | 205.34 | 38.46 | 0.0003 | 800.02 | 1 | 800.02 | 1467.79 | <0.0001 | ||
C—pH | 407.25 | 1 | 407.25 | 76.28 | <0.0001 | 32.11 | 1 | 32.11 | 58.92 | <0.0001 | ||
AB | 41.41 | 1 | 41.41 | 7.76 | 0.0237 | 45.60 | 1 | 45.60 | 83.66 | <0.0001 | ||
AC | 1003.52 | 1 | 1003.52 | 187.96 | <0.0001 | 36.55 | 1 | 36.55 | 67.06 | <0.0001 | ||
BC | 75.65 | 1 | 75.65 | 14.17 | 0.0055 | 41.86 | 1 | 41.86 | 76.80 | <0.0001 | ||
A2 | 1197.45 | 1 | 1197.45 | 224.28 | <0.0001 | 79.91 | 1 | 79.91 | 146.61 | <0.0001 | ||
B2 | 1261.34 | 1 | 1261.34 | 236.25 | <0.0001 | 248.34 | 1 | 248.34 | 455.63 | <0.0001 | ||
C2 | 385.47 | 1 | 385.47 | 72.20 | <0.0001 | 235.46 | 1 | 235.46 | 431.99 | <0.0001 | ||
Residual | 42.71 | 8 | 5.34 | 4.36 | 8 | 0.5451 | ||||||
Lack of Fit | 18.85 | 5 | 3.77 | 0.4741 | 0.7823 | NS | 3.09 | 5 | 0.6186 | 1.46 | 0.4004 | NS |
Pure Error | 23.86 | 3 | 7.95 | 1.27 | 3 | 0.4225 | ||||||
Cor Total | 5874.03 | 17 | 2089.97 | 17 |
M-Q | Q | ||||||
---|---|---|---|---|---|---|---|
Std. Dev. | 2.31 | R2 | 0.9927 | Std. Dev. | 0.7383 | R2 | 0.9979 |
Mean | 53.02 | Adjusted R2 | 0.9845 | Mean | 18.09 | Adjusted R2 | 0.9956 |
C.V. % | 4.36 | Predicted R2 | 0.9683 | C.V. % | 4.08 | Predicted R2 | 0.9859 |
Adeq. Precision | 31.5957 | Adeq. Precision | 71.4052 |
Instrumental Setup/Methodology Used | Bragg Value/Concept |
---|---|
Geometry—Setup | Bragg Brentano θ-θ |
2θ angular range | 5–100° |
Time per step | 1 s |
Step size | 0.04° |
Voltage | 30 kV |
Current | 10 |
Divergence slot (primary) | mA |
2θ angular range | 1 mm |
(A) | ||||||
---|---|---|---|---|---|---|
Factor | Symbol | Minimum | Maximum | Code Low | Code High | Mean |
Sorbent Mass (g) | A | 0.068 | 0.784 | −1 ↔ 0.20 | +1 ↔ 0.50 | 0.426 |
Time (min) | B | 13.0 | 147.0 | −1 ↔ 40.0 | +1 ↔ 120.0 | 80.0 |
pH | C | 4.0 | 9.0 | −1 ↔ 5.0 | +1 ↔ 8.0 | 6.5 |
(B) | ||||||
Factor | Symbol | Minimum | Maximum | Code Low | Code High | Mean |
Sorbent Mass (g) | A | 0.060 | 0.630 | −1 ↔ 0.17 | +1 ↔ 0.51 | 0.341 |
Time (min) | B | 13.0 | 147.0 | −1 ↔ 40.0 | +1 ↔ 120.0 | 80.0 |
pH | C | 4.0 | 9.0 | −1 ↔ 5.0 | +1 ↔ 8.0 | 6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández Trespalacios, M.; Mangiameli, M.F.; Gribaudo, L.; Frascaroli, M.I.; González, J.C. Use of Chitosan and Chitosan–Magnetite Spheres for Arsenic Groundwater Removal: Factorial Designs as Tools to Optimize the Efficiency of Removal. Inorganics 2024, 12, 294. https://doi.org/10.3390/inorganics12110294
Hernández Trespalacios M, Mangiameli MF, Gribaudo L, Frascaroli MI, González JC. Use of Chitosan and Chitosan–Magnetite Spheres for Arsenic Groundwater Removal: Factorial Designs as Tools to Optimize the Efficiency of Removal. Inorganics. 2024; 12(11):294. https://doi.org/10.3390/inorganics12110294
Chicago/Turabian StyleHernández Trespalacios, Mayra, María Florencia Mangiameli, Lina Gribaudo, María Inés Frascaroli, and Juan Carlos González. 2024. "Use of Chitosan and Chitosan–Magnetite Spheres for Arsenic Groundwater Removal: Factorial Designs as Tools to Optimize the Efficiency of Removal" Inorganics 12, no. 11: 294. https://doi.org/10.3390/inorganics12110294
APA StyleHernández Trespalacios, M., Mangiameli, M. F., Gribaudo, L., Frascaroli, M. I., & González, J. C. (2024). Use of Chitosan and Chitosan–Magnetite Spheres for Arsenic Groundwater Removal: Factorial Designs as Tools to Optimize the Efficiency of Removal. Inorganics, 12(11), 294. https://doi.org/10.3390/inorganics12110294