Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Optimized Structures of CuZn3O3
3.2. Optimized Structures of Cu2Zn3O3
3.3. Optimized Structures of Cu3Zn3O3
3.4. Optimized Structures of Cu4Zn3O3
4. Discussion
4.1. Structural Evolution in CunZn3O3 (n = 1–4) Clusters and Their Stability
4.2. Chemical Bonding of CunZn3O3 (n = 1–4) Clusters
4.3. Reactivity of CunZn3O3 (n = 1–4) Clusters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, C.; Zhang, J. Architectural Design for Enhanced C2 Product Selectivity in Electrochemical CO2 Reduction Using Cu-Based Catalysts: A Review. ACS Nano 2021, 15, 7975–8000. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; Xiao, S.; Lai, Q.; Wang, D.; Huang, Y.; Feng, G.; Zhang, R.; Wang, T. Advances in Enhancing the Stability of Cu-Based Catalysts for Methanol Reforming. Catalysts 2022, 12, 747. [Google Scholar] [CrossRef]
- Saw, S.K.; Datta, S.; Chavan, P.D.; Gupta, P.K.; Kumari, S.; Sahu, G.; Chauhan, V. Significance and influence of various promoters on Cu-based catalyst for synthesizing methanol from syngas: A critical review. J. Chem. Technol. Biotechnol. 2023, 98, 1083–1102. [Google Scholar] [CrossRef]
- Teng, M.; Ye, J.; Wan, C.; He, G.; Chen, H. Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia. Ind. Eng. Chem. Res. 2022, 61, 14731–14746. [Google Scholar] [CrossRef]
- Ranjekar, A.M.; Yadav, G.D. Steam Reforming of Methanol for Hydrogen Production: A Critical Analysis of Catalysis, Processes, and Scope. Ind. Eng. Chem. Res. 2021, 60, 89–113. [Google Scholar] [CrossRef]
- Hou, R.; Qiu, R.; Sun, K. Progress in the Cu-based catalyst supports for methanol synthesis from CO2. Chem. Ind. Eng. Prog. 2020, 39, 2639–2647. [Google Scholar] [CrossRef]
- Velu, S.; Suzuki, K. Selective Production of Hydrogen for Fuel Cells via Oxidative Steam Reforming of Methanol over CuZnAl Oxide Catalysts: Effect of Substitution of Zirconium and Cerium on the Catalytic Performance. Top. Catal. 2003, 22, 235–244. [Google Scholar] [CrossRef]
- Hübner, O.; Himmel, H.-J. Metal Cluster Models for Heterogeneous Catalysis: A Matrix-Isolation Perspective. Chem. Eur. J. 2018, 24, 8941–8961. [Google Scholar] [CrossRef]
- Yin, S.; Xie, Y.; Bernstein, E.R. Hydrogenation Reactions of Ethylene on Neutral Vanadium Sulfide Clusters: Experimental and Theoretical Studies. J. Phys. Chem. A 2011, 115, 10266–10275. [Google Scholar] [CrossRef]
- Castleman, A.W., Jr. Cluster Structure and Reactions: Gaining Insights into Catalytic Processes. Catal. Lett. 2011, 141, 1243–1253. [Google Scholar] [CrossRef]
- Hou, C.-C.; Wang, H.-F.; Li, C.; Xu, Q. From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 2020, 13, 1658–1693. [Google Scholar] [CrossRef]
- Qiao, B.; Wang, A.; Yang, X.; Allard, L.F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Liu, P.; Fu, G.; Zheng, N. Strategies for Stabilizing Atomically Dispersed Metal Catalysts. Small Methods 2018, 2, 1700286. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Qiu, Z.-Y.; Zhao, X.; Wang, W.-W.; Dang, J.-S. Trapped copper in [6]cycloparaphenylene: A fully-exposed Cu7 single cluster for highly active and selective CO electro-reduction. J. Mater. Chem. A 2021, 9, 25922–25926. [Google Scholar] [CrossRef]
- Palagin, D.; Knorpp, A.J.; Pinar, A.B.; Ranocchiari, M.; van Bokhoven, J.A. Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: Size matters? Nanoscale 2017, 9, 1144–1153. [Google Scholar] [CrossRef]
- Matxain, J.M.; Fowler, J.E.; Ugalde, J.M. Small clusters of II-VI materials: ZniOi, i = 1–9. Phys. Rev. A 2000, 62, 053201. [Google Scholar] [CrossRef]
- Fernando, A.; Dimuthu, K.L.; Weerawardene, M.; Karimova, N.V.; Aikens, C.M. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem. Rev. 2015, 115, 6112–6216. [Google Scholar] [CrossRef] [PubMed]
- Yong, Y.; Wang, Z.; Liu, K.; Song, B.; He, P. Structures, stabilities, and magnetic properties of Cu-doped ZnnOn (n = 3, 9, 12) clusters: A theoretical study. Comput. Theor. Chem. 2012, 989, 90–96. [Google Scholar] [CrossRef]
- Tayade, N.T.; Mane, S.M.; Shende, A.T.; Tirpude, M.P.; Shin, J.C. Dissociation of ZnO ring from Zn3O3 cluster by CASSCF. Chem. Phys. 2021, 542, 111077. [Google Scholar] [CrossRef]
- Jin, W.; Chen, G.; Duan, X.; Yin, Y.; Ye, H.; Wang, D.; Yu, J.; Mei, X.; Wu, Y. Adsorption behavior of formaldehyde on ZnO (101¯0) surface: A first principles study. Appl. Surf. Sci. 2017, 423, 451–456. [Google Scholar] [CrossRef]
- Cao, Y.; Luo, J.; Huang, W.; Ling, Y.; Zhu, J.; Li, W.-X.; Yang, F.; Bao, X. Probing surface defects of ZnO using formaldehyde. J. Chem. Phys. 2020, 152, 074714. [Google Scholar] [CrossRef]
- Qiao, L.; Zeng, Y.; Qu, C.Q.; Zhang, H.Z.; Hu, X.Y.; Song, L.J.; Bi, D.M.; Liu, S.J. Adsorption of oxygen atom on Zn-terminated (0001) surface of wurtzite ZnO: A density-functional theory investigation. Phys. E 2013, 48, 7–12. [Google Scholar] [CrossRef]
- Wang, B.; Xia, C.-J.; Fang, H.-L.; Chen, W.-J.; Zhang, Y.-F.; Huang, X. Mononuclear thorium halide clusters ThX4 (X = F, Cl): Gas-phase hydrolysis reactions. Phys. Chem. Chem. Phys. 2018, 20, 21184–21193. [Google Scholar] [CrossRef]
- Wang, B.; Xie, L.; Liu, X.-J.; Chen, W.-J.; Zhang, Y.-F.; Huang, X. Structural Evolution and Chemical Bonding of Di-Niobium Boride Clusters Nb2Bx−/0 (x = 1–6): Hexagonal Bipyramid Nb2B6−/0 Species. Eur. J. Inorg. Chem. 2018, 2018, 940–950. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, S.-Y.; Ye, L.-H.; Zhang, X.-F.; Zhang, Y.-F.; Chen, W.-J. Exploring the Reaction Mechanism of H2S Decomposition with MS3 (M = Mo, W) Clusters. ACS Omega 2020, 5, 13324–13332. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, N.; Zhang, X.-B.; Huang, X.; Zhang, Y.-F.; Chen, W.-K.; Ding, K.-N. Probing the Smallest Molecular Model of MoS2 Catalyst: S2 Units in the MoSn−/0 (n = 1–5) Clusters. J. Phys. Chem. A 2013, 117, 5632–5641. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dolg, M. ABCluster: The artificial bee colony algorithm for cluster global optimization. Phys. Chem. Chem. Phys. 2015, 17, 24173–24181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dolg, M. Global optimization of clusters of rigid molecules using the artificial bee colony algorithm. Phys. Chem. Chem. Phys. 2016, 18, 3003–3010. [Google Scholar] [CrossRef]
- Becke, A.D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Küchle, W.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 1994, 100, 7535–7542. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. (THEOCHEM) 2004, 673, 203–209. [Google Scholar] [CrossRef]
- Cao, X.; Dolg, M.; Stoll, H. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 2003, 118, 487–496. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Manby, F.R.; Schütz, M.; Celani, P.; Knizia, G.; Korona, T.; Lindh, R.; Mitrushenkov, A.; Rauhut, G.; et al. MOLPRO, Version 2010.1, a Package of ab initio Programs. Available online: http://www.molpro.net (accessed on 1 January 2011).
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 89th ed.; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2008. [Google Scholar]
- Chen, Z.W.; Yan, J.M.; Zheng, W.T.; Jiang, Q. Cu4 Cluster Doped Monolayer MoS2 for CO Oxidation. Sci. Rep. 2015, 5, 11230. [Google Scholar] [CrossRef]
- Chen, Z.W.; Chen, L.X.; Yang, C.C.; Jiang, Q. Atomic (single, double, and triple atoms) catalysis: Frontiers, opportunities, and challenges. J. Mater. Chem. A 2019, 7, 3492–3515. [Google Scholar] [CrossRef]
- Nicholls, D. Copper. In Complexes and First-Row Transition Elements; Macmillan Education: London, UK, 1974; pp. 201–206. [Google Scholar]
- Thang, H.V.; Pacchioni, G. Spontaneous Formation of Gold Cluster Anions on ZnO/Cu(111) Bilayer Films. J. Phys. Chem. C 2019, 123, 7644–7653. [Google Scholar] [CrossRef]
- Fierro, G.; Lo Jacono, M.; Inversi, M.; Porta, P.; Cioci, F.; Lavecchia, R. Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction. Appl. Catal. A Gen. 1996, 137, 327–348. [Google Scholar] [CrossRef]
- Hammer, B.; Nørskov, J.K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 1995, 343, 211–220. [Google Scholar] [CrossRef]
- Rodríguez-Kessler, P.L.; Rodríguez-Domínguez, A.R.; Muñoz-Castro, A. On the structure and reactivity of PtnCun (n = 1–7) alloy clusters. Phys. Chem. Chem. Phys. 2021, 23, 7233–7239. [Google Scholar] [CrossRef]
- Gao, G.; Waclawik, E.R.; Du, A. Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. J. Catal. 2017, 352, 579–585. [Google Scholar] [CrossRef]
- Takagi, N.; Ishimura, K.; Fukuda, R.; Ehara, M.; Sakaki, S. Reaction Behavior of the NO Molecule on the Surface of an Mn Particle (M = Ru, Rh, Pd, and Ag; n = 13 and 55): Theoretical Study of Its Dependence on Transition-Metal Element. J. Phys. Chem. A 2019, 123, 7021–7033. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, L. Mechanism of the Reverse Water–Gas Shift Reaction Catalyzed by Cu12TM Bimetallic Nanocluster: A Density Functional Theory Study. J. Clust. Sci. 2018, 29, 867–877. [Google Scholar] [CrossRef]
- Megha; Mondal, K.; Ghanty, T.K.; Banerjee, A. Adsorption and Activation of CO2 on Small-Sized Cu–Zr Bimetallic Clusters. J. Phys. Chem. A 2021, 125, 2558–2572. [Google Scholar] [CrossRef] [PubMed]
- Arteca, G.A.; Hernández-Laguna, A.; Rández, J.J.; Smeyers, Y.G.; Mezey, P.G. A topological analysis of molecular electrostatic potential on van der Waals surfaces for histamine and 4-substituted derivatives as H2-receptor agonists. J. Comput. Chem. 1991, 12, 705–716. [Google Scholar] [CrossRef]
- Zack, L.N.; Pulliam, R.L.; Ziurys, L.M. The pure rotational spectrum of ZnO in the X1Σ+ and a3Πi states. J. Mol. Spectrosc. 2009, 256, 186–191. [Google Scholar] [CrossRef]
- Clemmer, D.E.; Dalleska, N.F.; Armentrout, P.B. Reaction of Zn+ with NO2. The gas-phase thermochemistry of ZnO. J. Chem. Phys. 1991, 95, 7263–7268. [Google Scholar] [CrossRef]
- Huber, K.P.; Herzberg, G. Constants of diatomic molecules. In Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules; Huber, K.P., Herzberg, G., Eds.; Springer: Boston, MA, USA, 1979; pp. 8–689. [Google Scholar]
- Steimle, T.C.; Nachman, D.F.; Fletcher, D.A. Laboratory measurement of the permanent electric dipole moment of gas-phase CuO in its X2Π state. J. Chem.Phys. 1987, 87, 5670–5673. [Google Scholar] [CrossRef]
Cluster | Zn3O3 | CuZn3O3 | Cu2Zn3O3 | Cu3Zn3O3 | Cu4Zn3O3 |
---|---|---|---|---|---|
Eb,1 | 22.07 | 24.03 | 26.68 | 28.28 | 31.27 |
Cluster | Zn-1 | Zn-2 | Zn-3 | O-1 | O-2 | O-3 | Cu-1 | Cu-2 | Cu-3 | Cu-4 |
---|---|---|---|---|---|---|---|---|---|---|
Zn3O3 | 1.13 | 1.13 | 1.13 | −1.13 | −1.13 | −1.13 | ||||
CuZn3O3 | 0.64 | 1.12 | 1.15 | −1.15 | −1.14 | −1.06 | 0.43 | |||
Cu2Zn3O3 | 0.75 | 1.14 | 1.12 | −1.15 | −1.15 | −1.10 | 0.37 | 0.02 | ||
Cu3Zn3O3 | 0.37 | 1.11 | 1.12 | −1.16 | −1.14 | −1.09 | 0.28 | 0.25 | 0.26 | |
Cu4Zn3O3 | 0.37 | 1.12 | 1.11 | −1.17 | −1.14 | −1.11 | 0.26 | 0.31 | 0.31 | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.-W.; Zou, H.-Y.; Li, H.-H.; Wang, B.; Chen, W.-J. Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms. Inorganics 2024, 12, 56. https://doi.org/10.3390/inorganics12020056
Tao Z-W, Zou H-Y, Li H-H, Wang B, Chen W-J. Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms. Inorganics. 2024; 12(2):56. https://doi.org/10.3390/inorganics12020056
Chicago/Turabian StyleTao, Zhi-Wei, Han-Yi Zou, Hong-Hui Li, Bin Wang, and Wen-Jie Chen. 2024. "Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms" Inorganics 12, no. 2: 56. https://doi.org/10.3390/inorganics12020056
APA StyleTao, Z. -W., Zou, H. -Y., Li, H. -H., Wang, B., & Chen, W. -J. (2024). Theoretical Study on the Structures and Stabilities of CunZn3O3 (n = 1–4) Clusters: Sequential Doping of Zn3O3 Cluster with Cu Atoms. Inorganics, 12(2), 56. https://doi.org/10.3390/inorganics12020056