6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterizations
2.2. Single Crystal X-ray Diffraction Analyses
2.3. Structural Stabilities and Favorable Spin States
2.4. Electrochemical Properties
2.5. Absorption Properties
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthesis of trans-2,2-form and 3,1-Form of [Rh2(bhp)4]
3.3. Crystallography
3.4. Calculation Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cotton, F.A.; Murillo, C.A.; Walton, R.A. Multiple Bonds between Metal Atoms, 3rd ed.; Springer Science and Business Media: New York, NY, USA, 2005. [Google Scholar]
- Köberl, M.; Cokoja, M.; Herrmann, W.A.; Kühn, F.E. From molecules to materials: Molecular paddle-wheel synthons of macromolecules, cage compounds and metal–organic frameworks. Dalton Trans. 2011, 40, 6834–6859. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, M.H.; Patmore, N.J. Studies of electronic coupling and mixed valency in metal-metal quadruply bonded complexes linked by dicarboxylate and closely related ligands. Acc. Chem. Res. 2007, 40, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Cotton, F.A.; Lin, C.; Murillo, C.A. Supramolecular arrays based on dimetal building units. Acc. Chem. Res. 2001, 34, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Chui, S.S.Y.; Lo, S.M.F.; Charmant, J.P.H.; Orpen, A.G.; Williams, I.D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 1999, 283, 1148–1150. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Kim, J.; Wachter, J.B.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Porous Metal-Organic Polyhedra: 25 Å Cuboctahedron Constructed from 12 Cu2(CO2)4 Paddle-Wheel Building Blocks. J. Am. Chem. Soc. 2001, 123, 4368–4369. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Yano, N.; Mikuriya, M.; Handa, M. Coordination polymers and metal–organic frameworks based on paddlewheel-type dirhodium(II) tetracarboxylates. Coord. Chem. Rev. 2022, 472, 214796. [Google Scholar] [CrossRef]
- Kataoka, Y.; Yano, N.; Mikuriya, M.; Handa, M. Paddlewheel-type dirhodium complexes with N,N’-bridging ligands. Coord. Chem. Rev. 2023, 479, 214997. [Google Scholar] [CrossRef]
- Berry, J.F. Metal-Metal Bonded Compounds of the Group IX Elements, Comprehensive Coordination Chemistry III, 3rd ed.; Constable, E.C., Parkin, G., Que, L., Jr., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 6, pp. 4–42. [Google Scholar]
- Hrdina, R. Dirhodium(II,II) Paddlewheel Complexes. Eur. J. Inorg. Chem. 2021, 6, 501–528. [Google Scholar] [CrossRef]
- Hansen, J.; Davies, H.M.L. High Symmetry Dirhodium(II) Paddlewheel Complexes as Chiral Catalysts. Coord. Chem. Rev. 2008, 252, 545–555. [Google Scholar] [CrossRef]
- Du Bois, J. Rhodium-Catalyzed C–H Amination. An Enabling Method for Chemical Synthesis. Org. Process Res. Dev. 2011, 15, 758–762. [Google Scholar] [CrossRef]
- Fiori, K.W.; Du Bois, J. Catalytic Intermolecular Amination of C–H Bonds: Method Development and Mechanistic Insights. J. Am. Chem. Soc. 2007, 129, 562–568. [Google Scholar] [CrossRef]
- DeAngelis, A.; Panish, R.; Fox, J.M. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration. Acc. Chem. Res. 2016, 49, 115–127. [Google Scholar] [CrossRef]
- Zalatan, D.N.; Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C-H amination. J. Am. Chem. Soc. 2008, 130, 9220–9221. [Google Scholar] [CrossRef]
- Kataoka, Y.; Yano, N.; Handa, M.; Kawamoto, T. Intrinsic Hydrogen Evolution Capability and Theoretically Supported Reaction Mechanism of Paddlewheel-type Dirhodium Complex. Dalton Trans. 2019, 48, 7302–7312. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Yano, N.; Kohara, Y.; Tsuji, T.; Inoue, S.; Kawamoto, T. Experimental and Theoretical Study of Photochemical Hydrogen Evolution Catalyzed by Paddlewheel-Type Dirhodium Complexes with Electron Withdrawing Carboxylate Ligands. ChemCatChem 2019, 11, 6218–6226. [Google Scholar] [CrossRef]
- Esteban, J.; Ros-Lis, J.V.; Martínez-Máñez, R.; Marcos, M.D.; Moragues, M.; Soto, J.; Sancenón, F. Sensitive and Selective Chromogenic Sensing of Carbon Monoxide by Using Binuclear Rhodium Complexes. Angew. Chem. Int. Ed. 2010, 49, 4934–4937. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, Y.; Kohara, Y.; Yano, N.; Kawamoto, T. Unique vapochromism of a paddlewheel-type dirhodium complex accompanied by dynamic structural and phase transitions. Dalton Trans. 2020, 49, 14373–14377. [Google Scholar] [CrossRef]
- Chifotides, H.T.; Dunber, K.R. Interactions of Metal-Metal-Bonded Antitumor Active Complexes with DNA Fragments and DNA. Acc. Chem. Res. 2005, 38, 146–156. [Google Scholar] [CrossRef]
- Cotton, F.A.; Han, S.; Wang, W. Preparation, Structure, and Properties of the Polar Dirhodium(II) Tetrakis(6-fluoro-2-oxypyridinate) Molecule. Inorg. Chem. 1984, 23, 4762–4765. [Google Scholar] [CrossRef]
- Kataoka, Y.; Sato, K.; Yano, N. Hydroxypyridinate-bridged paddlewheel-type dirhodium complex as a catalyst for photochemical and electrochemical hydrogen evolution. J. Chem. Phys. 2023, 159, 204304. [Google Scholar] [CrossRef] [PubMed]
- Cotton, F.A.; Felthouse, T.R. Seven Dinuclear Rhodium(II) Complexes with o-Oxypyridine Anions as Ligands. Inorg. Chem. 1981, 20, 584–600. [Google Scholar] [CrossRef]
- Clegg, W.; Garner, C.D.; Akhter, L.; Al-Samman, M.H. Steric and Crystal-Packing Effects on the Molecular Structures of Dimetal(II) Tetrakis(2-oxvpyridine) Complexes. Inorg. Chem. 1983, 22, 2466–2468. [Google Scholar] [CrossRef]
- Kawamura, T.; Ebihara, M.; Miyamoto, M. A Three-Dimensional Interaction Network of δ(M-M) and π(ligand) Electrons. The Crystal Structure of [Rh2(mhp)4](SbCl6)·2CH2ClCH2Cl (mhp = 2-oxy-6-methylpyridine). Chem. Lett. 1993, 22, 1509–1512. [Google Scholar] [CrossRef]
- Kawamura, T.; Kachi, H.; Fujii, H.; Kachi-Terajima, C.; Kawamura, Y.; Kanematsu, N.; Ebihara, M.; Sugimoto, K.; Kuroda-Sowa, T.; Munakata, M. δ*MM-πL odd electron delocalization onto aromatic bridging ligands in a paramagnetic dirhodium complex and intermolecular π-stack interaction in crystal. Bull. Chem. Soc. Jpn. 2000, 73, 657–668. [Google Scholar] [CrossRef]
- Brunner, H.; Wutz, K.; Doyle, M.P. Asymmetrische Katalysen, 58. Mitt.: Enantioselektive S-H-und C-H-Insertionen mit optisch aktiven Rh (II)-und Cu (II)-Katalysatoren. Monatshefte Chem./Chem. Mon. 1990, 121, 755–764. [Google Scholar] [CrossRef]
- Doyle, M.P.; Davies, S.B.; Hu, W. Optimization of enantiocontrol in cis-selective cyclopropanation reactions catalyzed by dirhodium (II) tetrakis [alkyl 2-oxaazetidine-4 (S)-carboxylates]. Chem. Commun. 2000, 10, 867–868. [Google Scholar] [CrossRef]
- Li, Z.; David, A.; Albani, B.A.; Pellois, J.P.; Turro, C.; Dunbar, K.R. Optimizing the electronic properties of photoactive anticancer oxypyridine-bridged dirhodium (II, II) complexes. J. Am. Chem. Soc. 2014, 136, 17058–17070. [Google Scholar] [CrossRef]
- Cotton, F.A.; Ren, T.; Eglin, J.L. Preparative, structural, and magnetic studies of 2-hydroxypyridinate complexes of diruthenium (II). J. Am. Chem. Soc. 1990, 112, 3439–3445. [Google Scholar] [CrossRef]
- Ren, T.; Lin, C.; Valente, E.J.; Zubkowski, J.D. The influence of remote substituent in tetrakis(μ-N,N′-diarylformamidinato)-dirhodium(II) compounds. Part 7. Linear free energy relationships in dinuclear compounds. Inorg. Chim. Acta 2000, 297, 283–290. [Google Scholar] [CrossRef]
- Cotton, F.A.; Hillard, E.A.; Murillo, C.A. The first dirhodium tetracarboxylate molecule without axial ligation: New insight into the electronic structures of molecules with importance in catalysis and other reactions. J. Am. Chem. Soc. 2002, 124, 5658–5660. [Google Scholar] [CrossRef] [PubMed]
- Cotton, F.A.; Hillard, E.A.; Liu, C.Y.; Murillo, C.A.; Wang, W.; Wang, X. Steps on the way to the first dirhodium tetracarboxylate with no axial ligation: Synthetic lessons and a plethora of Rh2(O2CR)4L2− n compounds, n = 0, 1, 2. Inorg. Chim. Acta 2002, 337, 233–246. [Google Scholar] [CrossRef]
- Legzdins, P.; Mitchell, R.W.; Rempel, G.L.; Ruddick, J.D.; Wilkinsin, G. The protonation of ruthenium- and rhodium-bridged carboxylates and their use as homogeneous hydrogenation catalysts for unsaturated substances. J. Chem. Soc. A 1970, 3322–3326. [Google Scholar] [CrossRef]
- CrysAlisPro Software System, Rigaku Oxford Diffraction; Rigaku Corporation: Tokyo, Japan, 2018.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
trans-2,2-[Rh2(bhp)4] | 3,1-[Rh2(bhp)4]2 | 3,1-[Rh2(bhp)4(DMF)] | |
---|---|---|---|
Chemical formula | C20H12Br4N4O4Rh2 | C42H28Br8Cl4N8O8Rh4 | C23H19Br4N5O5Rh2 |
Formula weight | 897.80 | 1965.44 | 970.89 |
Crystal system | monoclinic | triclinic | orthorhombic |
Space group | P 21/n | P-1 | P 212121 |
a (Å) | 10.7274(3) | 11.7389(3) | 9.7976(4) |
b (Å) | 15.1958(4) | 14.1558(4) | 12.1892(6) |
c (Å) | 15.1861(4) | 18.6200(4) | 23.3582(10) |
α (deg) | 90 | 109.831(2) | 90 |
β (deg) | 103.275(3) | 94.751(2) | 90 |
γ (deg) | 90 | 109.617(2) | 90 |
V (Å3) | 2409.36(12) | 2673.30(13) | 2789.6(2) |
Z | 4 | 2 | 4 |
Dcalc (g cm−3) | 2.475 | 2.442 | 2.312 |
μ (mm−1) | 8.040 | 7.471 | 6.957 |
F(000) | 1688.0 | 1856 | 1848.0 |
R1 (I > 2σ(I)) | 0.0374 | 0.0319 | 0.0465 |
wR2 (I > 2σ(I)) | 0.0879 | 0.0667 | 0.1007 |
R1 (all data) | 0.0443 | 0.0465 | 0.0608 |
wR2 (all data) | 0.0904 | 0.0716 | 0.1055 |
GOF on F2 | 1.069 | 1.013 | 1.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, K.; Yano, N.; Kataoka, Y. 6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties. Inorganics 2024, 12, 70. https://doi.org/10.3390/inorganics12030070
Sato K, Yano N, Kataoka Y. 6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties. Inorganics. 2024; 12(3):70. https://doi.org/10.3390/inorganics12030070
Chicago/Turabian StyleSato, Kozo, Natsumi Yano, and Yusuke Kataoka. 2024. "6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties" Inorganics 12, no. 3: 70. https://doi.org/10.3390/inorganics12030070
APA StyleSato, K., Yano, N., & Kataoka, Y. (2024). 6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties. Inorganics, 12(3), 70. https://doi.org/10.3390/inorganics12030070