Non-Covalent Interactions in Coordination Chemistry
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Maharramov, A.M.; Mahmudov, K.T.; Kopylovich, M.N.; Pombeiro, A.J.L. (Eds.) Non-Covalent Interactions in the Synthesis and Design of New Compounds; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Grabowski, S.J. What Is the Covalency of Hydrogen Bonding? Chem. Rev. 2011, 111, 2597–2625. [Google Scholar] [CrossRef]
- Granelli, M.; Downward, A.M.; Huber, R.; Guénée, L.; Besnard, C.; Krämer, K.W.; Decurtins, S.; Liu, S.-X.; Thompson, L.K.; Williams, A.F. Dinuclear Complexes Formed by Hydrogen Bonds: Synthesis, Structure and Magnetic and Electrochemical Properties. Chem.—Eur. J. 2017, 23, 7104–7112. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Gurbanov, A.V.; Aliyeva, V.A.; Guedes da Silva, M.F.C.; Resnati, G.; Pombeiro, A.J.L. Chalcogen bonding in coordination chemistry. Coord. Chem. Rev. 2022, 464, 214556. [Google Scholar] [CrossRef]
- Sapronov, A.A.; Kubasov, A.S.; Khrustalev, V.N.; Artemjev, A.A.; Burkin, G.M.; Dukhnovsky, E.A.; Chizhov, A.O.; Kritchenkov, A.S.; Gomila, R.M.; Frontera, A.; et al. Se⋯π Chalcogen Bonding in 1,2,4-Selenodiazolium Tetraphenylborate Complexes. Symmetry 2023, 15, 212. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Vologzhanina, A.V.; Malinina, E.A.; Kuznetsov, N.T. Dihydrogen Bonds in Salts of Boron Cluster Anions [BnHn]2− with Protonated Heterocyclic Organic Bases. Crystals 2019, 9, 330. [Google Scholar] [CrossRef]
- Filippov, O.A.; Belkova, N.V.; Epstein, L.M.; Shubina, E.S. Chemistry of boron hydrides orchestrated by dihydrogen bonds. J. Organomet. Chem. 2013, 747, 30–42. [Google Scholar] [CrossRef]
- Ivanov, D.M.; Novikov, A.S.; Ananyev, I.V.; Kirina, Y.V.; Kukushkin, V.Y. Halogen bonding between metal centers and halocarbons. Chem. Commun. 2016, 52, 5565–5568. [Google Scholar] [CrossRef]
- Avdeeva, V.V.; Malinina, E.A.; Zhizhin, K.Y.; Kuznetsov, N.T. Salts and Complexes Containing the Decachloro-closo-Decaborate Anion. Russ. J. Coord. Chem. 2021, 47, 519–545. [Google Scholar] [CrossRef]
- Kravchenko, E.A.; Gippius, A.A.; Kuznetsov, N.T. Noncovalent Interactions in Compounds Based on Perchlorinated Boron Cluster as Monitored by 35Cl NQR (Review). Russ. J. Inorg. Chem. 2020, 65, 546–566. [Google Scholar] [CrossRef]
- Usol’tsev, A.N.; Sonina, A.A.; Korobeinikov, N.A.; Adonin, S.A. Trimethylammonium Dichlorohexachlorotellurate(IV): Crystal Structure and Specific Features of Noncovalent Cl···Cl Interactions. Russ. J. Coord. Chem. 2023, 49, 807–811. [Google Scholar] [CrossRef]
- Malenov, D.P.; Zarić, S.D. Stacking interactions of aromatic ligands in transition metal complexes. Coord. Chem. Rev. 2020, 419, 213338. [Google Scholar] [CrossRef]
- Zhang, T.; Vanderghinste, J.; Guidetti, A.; Van Doorslaer, S.; Barcaro, G.; Monti, S.; Das, S. π–π Stacking Complex Induces Three-Component Coupling Reactions to Synthesize Functionalized Amines. Angew. Chem. Int. Ed. 2022, 61, e202212083. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 21, 3885–3896. [Google Scholar] [CrossRef]
- Fachini, L.G.; Baptistella, G.B.; Postal, K.; Santana, F.S.; de Souza, E.M.; Ribeiro, R.R.; Nunes, G.G.; Sá, E.L. A new approach to study semi-coordination using two 2-methyl-5-nitroimidazole copper(II) complexes of biological interest as a model system. RSC Adv. 2023, 13, 27997–28007. [Google Scholar] [CrossRef]
- Syaima, H.; Prasetyo, W.E.; Rahardjo, S.B.; Suryanti, V. Semi-coordination Cu–O bond on a copper complex featuring O,O-donor ligand as potential antibacterial agent: Green synthesis, characterization, DFT, in-silico ADMET profiling and molecular docking studies. Struct. Chem. 2023. [Google Scholar] [CrossRef]
- Sarma, P.; Sharma, P.; Frontera, A.; Barcelo-Oliver, M.; Verma, A.K.; Barthakur, T.; Bhattacharyya, M.K. Unconventional π-hole and Semi-coordination regium bonding interactions directed supramolecular assemblies in pyridinedicarboxylato bridged polymeric Cu(II) Compounds: Antiproliferative evaluation and theoretical studies. Inorg. Chim. Acta 2021, 525, 120461. [Google Scholar] [CrossRef]
- Lehn, J.-M. (Ed.) Supramolecular Chemistry, Concepts and Perspectives; VCH: Weinheim, Germany, 1995; 271p. [Google Scholar]
- Novikov, A.S. Plethora of Non-Covalent Interactions in Coordination and Organometallic Chemistry Are Modern Smart Tool for Materials Science, Catalysis, and Drugs Design. Int. J. Mol. Sci. 2022, 23, 14767. [Google Scholar] [CrossRef]
- Novikov, A.S. Recent Progress in Theoretical Studies and Computer Modeling of Non-Covalent Interactions. Crystals 2023, 13, 361. [Google Scholar] [CrossRef]
- Novikov, A.S. Non-Covalent Catalysts. Catalysts 2023, 13, 339. [Google Scholar] [CrossRef]
- Shenderovich, I.G. Editorial to the Special Issue “Gulliver in the Country of Lilliput: An Interplay of Noncovalent Interactions”. Molecules 2021, 26, 158. [Google Scholar] [CrossRef]
- Chopra, D.; Thomas, S.P.; Resnati, G. Contributions of Professor Tayur N. Guru Row to Research in Small-Molecule Crystallography. Cryst. Growth Des. 2023, 23, 3931–3934. [Google Scholar] [CrossRef]
- Thamotharan, S.; Percino, M.J.; Gil, D.M. Editorial: Experimental and theoretical investigation of non-covalent interactions in potential bioactive compounds. Front. Chem. 2023, 11, 1326955. [Google Scholar] [CrossRef]
- Vologzhanina, A.V.; Nelyubina, Y.V. Special Issue Editorial: Chemical Bonding in Crystals and Their Properties. Crystals 2020, 10, 194. [Google Scholar] [CrossRef]
- Gomila, R.M.; Tiekink, E.R.T.; Frontera, A. A Computational Chemistry Investigation of the Influence of Steric Bulk of Dithiocarbamato-Bound Organic Substituents upon Spodium Bonding in Three Homoleptic Mercury(II) Bis(N,N-dialkyldithiocarbamato) Compounds for Alkyl = Ethyl, Isobutyl, and Cyclohexyl. Inorganics 2023, 11, 468. [Google Scholar] [CrossRef]
- Bauzá, A.; Alkorta, I.; Elguero, J.; Mooibroek, T.J.; Frontera, A. Spodium Bonds: Noncovalent Interactions Involving Group 12 Elements. Angew. Chem. 2020, 59, 17482–17487. [Google Scholar] [CrossRef]
- Gomila, R.M.; Bauzá, A.; Mooibroek, T.J.; Frontera, A. Spodium bonding in five coordinated Zn(ii): A new player in crystal engineering? CrystEngComm 2021, 23, 3084–3093. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, Q.; Yu, H.; Fu, M.; Li, Q. Insight into Spodium–π Bonding Characteristics of the MX2⋯π (M = Zn, Cd and Hg; X = Cl, Br and I) Complexes—A Theoretical Study. Molecules 2022, 27, 2885. [Google Scholar] [CrossRef]
- Karmakar, M.; Frontera, A.; Chattopadhyay, S.; Mooibroek, T.J.; Bauzá, A. Intramolecular Spodium Bonds in Zn(II) Complexes: Insights from Theory and Experiment. Int. J. Mol. Sci. 2020, 21, 7091. [Google Scholar] [CrossRef]
- Popov, R.A.; Novikov, A.S.; Suslonov, V.V.; Boyarskiy, V.P. Molecular Switching through Chalcogen-Bond-Induced Isomerization of Binuclear (Diaminocarbene)PdII Complexes. Inorganics 2023, 11, 255. [Google Scholar] [CrossRef]
- Olbrykh, A.; Titov, A.; Smol’yakov, A.; Filippov, O.; Shubina, E.S. Exploring the Interaction of Pyridine-Based Chalcones with Trinuclear Silver(I) Pyrazolate Complex. Inorganics 2023, 11, 175. [Google Scholar] [CrossRef]
- Matveev, E.Y.; Avdeeva, V.V.; Kubasov, A.S.; Zhizhin, K.Y.; Malinina, E.A.; Kuznetsov, N.T. Synthesis and Structures of Lead(II) Complexes with Hydroxy-Substituted Closo-Decaborate Anions. Inorganics 2023, 11, 144. [Google Scholar] [CrossRef]
- Korobeynikov, N.A.; Usoltsev, A.N.; Abramov, P.A.; Komarov, V.Y.; Sokolov, M.N.; Adonin, S.A. Trimethylammonium Sn(IV) and Pb(IV) Chlorometalate Complexes with Incorporated Dichlorine. Inorganics 2023, 11, 25. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubasov, A.S.; Avdeeva, V.V. Non-Covalent Interactions in Coordination Chemistry. Inorganics 2024, 12, 79. https://doi.org/10.3390/inorganics12030079
Kubasov AS, Avdeeva VV. Non-Covalent Interactions in Coordination Chemistry. Inorganics. 2024; 12(3):79. https://doi.org/10.3390/inorganics12030079
Chicago/Turabian StyleKubasov, Alexey S., and Varvara V. Avdeeva. 2024. "Non-Covalent Interactions in Coordination Chemistry" Inorganics 12, no. 3: 79. https://doi.org/10.3390/inorganics12030079
APA StyleKubasov, A. S., & Avdeeva, V. V. (2024). Non-Covalent Interactions in Coordination Chemistry. Inorganics, 12(3), 79. https://doi.org/10.3390/inorganics12030079