Effect of Multiple Doping Elements on Polarity Switching of Polycrystalline SnSe Semiconductor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spark Plasma Sintering
2.2. Electron Microscopy and X-ray Diffraction
2.3. Seebeck Coefficient
3. Materials and Methods
3.1. Mechanical Properties
3.2. Apparatus Used for Measuring Seebeck Coefficient at Room Temperature
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. Power Utilisation of Nuclear Energy. In An Introduction to Nuclear Waste Immobilisation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 57–70. ISBN 978-0-08-102702-8. [Google Scholar]
- Yuan, Z.; Tang, X.; Liu, Y.; Xu, Z.; Liu, K.; Zhang, Z.; Chen, W.; Li, J. A Stacked and Miniaturized Radioisotope Thermoelectric Generator by Screen Printing. Sens. Actuators A Phys. 2017, 267, 496–504. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Nguyen, T.H.; Duong, V.T.; Lee, J.E.; Park, S.-D.; Song, J.Y.; Park, H.-M.; Duong, A.T.; Cho, S. Thermoelectric Properties of Hot-Pressed Bi-Doped n-Type Polycrystalline SnSe. Nanoscale Res. Lett. 2018, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric Generator (TEG) Technologies and Applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Sassi, S.; Candolfi, C.; Vaney, J.-B.; Ohorodniichuk, V.; Masschelein, P.; Dauscher, A.; Lenoir, B. Assessment of the Thermoelectric Performance of Polycrystalline p-Type SnSe. Appl. Phys. Lett. 2014, 104, 212105. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Chang, C.; Tan, G.; Kanatzidis, M.G. SnSe: A Remarkable New Thermoelectric Material. Energy Environ. Sci. 2016, 9, 3044–3060. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Liu, G.; Fu, Y.; Liu, Z.; Tan, X.; Shao, H.; Jiang, H.; Tan, T.; Jiang, J. Optimization of Thermoelectric Properties in n -Type SnSe Doped with BiCl3. Appl. Phys. Lett. 2016, 108, 083902. [Google Scholar] [CrossRef]
- Tang, G.; Wen, Q.; Yang, T.; Cao, Y.; Wei, W.; Wang, Z.; Zhang, Z.; Li, Y. Rock-Salt-Type Nanoprecipitates Lead to High Thermoelectric Performance in Undoped Polycrystalline SnSe. RSC Adv. 2017, 7, 8258–8263. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V.P.; Kanatzidis, M.G. Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals. Nature 2014, 508, 373–377. [Google Scholar] [CrossRef]
- Duong, A.T.; Nguyen, V.Q.; Duvjir, G.; Duong, V.T.; Kwon, S.; Song, J.Y.; Lee, J.K.; Lee, J.E.; Park, S.; Min, T.; et al. Achieving ZT = 2.2 with Bi-Doped n-Type SnSe Single Crystals. Nat. Commun. 2016, 7, 13713. [Google Scholar] [CrossRef]
- Yamamoto, C.; He, X.; Katase, T.; Ide, K.; Goto, Y.; Mizuguchi, Y.; Samizo, A.; Minohara, M.; Ueda, S.; Hiramatsu, H.; et al. Double Charge Polarity Switching in Sb-Doped SnSe with Switchable Substitution Sites. Adv. Funct. Mater. 2021, 31, 2008092. [Google Scholar] [CrossRef]
- Dona, J.; Archana, J.; Kamalakannan, S.; Prakash, M.; Hara, K.; Harish, S.; Navaneethan, M. Double Charge Polarity Switching in Sb-Doped SnSe for Enhanced Thermo-Electric Power Generation. J. Alloys Compd. 2022, 899, 163269. [Google Scholar] [CrossRef]
- Yang, R.; Li, Y.; Lin, W.; Xu, J.; Wang, L.; Liu, J. The Improvement of Thermoelectric Properties of SnSe by Alkali Metal Doping. Mod. Phys. Lett. B 2024, 38, 2450052. [Google Scholar] [CrossRef]
- Tang, Y.; Shen, L.; Chen, Z.; Sun, L.; Liu, W.; Liu, J.; Deng, S. The N-Type Pb-Doped Single Crystal SnSe Thermoelectric Material Synthesized by a Sn-Flux Method. Phys. B Condens. Matter 2019, 570, 128–132. [Google Scholar] [CrossRef]
- Lee, Y.K.; Luo, Z.; Cho, S.P.; Kanatzidis, M.G.; Chung, I. Surface Oxide Removal for Polycrystalline SnSe Reveals Near-Single-Crystal Thermoelectric Performance. Joule 2019, 3, 719–731. [Google Scholar] [CrossRef]
- Bishara, H.; Lee, S.; Brink, T.; Ghidelli, M.; Dehm, G. Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure. ACS Nano 2021, 15, 16607–16615. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wood, M.; Imasato, K.; Kuo, J.J.; Lam, D.; Mortazavi, A.N.; Slade, T.J.; Hodge, S.A.; Xi, K.; Kanatzidis, M.G.; et al. Expression of Interfacial Seebeck Coefficient through Grain Boundary Engineering with Multi-Layer Graphene Nanoplatelets. Energy Environ. Sci. 2020, 13, 4114–4121. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, Y.K.; Yu, Y.; Byun, S.; Luo, Z.-Z.; Lee, H.; Ge, B.; Lee, Y.-L.; Chen, X.; Lee, J.Y.; et al. Polycrystalline SnSe with a Thermoelectric Figure of Merit Greater than the Single Crystal. Nat. Mater. 2021, 20, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, W.; Ge, Z.-H.; Zheng, Z.; Luo, J.; Fan, P.; Li, B. Enhanced Thermoelectric Properties of Polycrystalline SnSe via LaCl3 Doping. Materials 2018, 11, 203. [Google Scholar] [CrossRef]
- Chen, Z.-G.; Shi, X.; Zhao, L.-D.; Zou, J. High-Performance SnSe Thermoelectric Materials: Progress and Future Challenge. Prog. Mater. Sci. 2018, 97, 283–346. [Google Scholar] [CrossRef]
- Chen, C.-L.; Wang, H.; Chen, Y.-Y.; Day, T.; Snyder, G.J. Thermoelectric Properties of P-Type Polycrystalline SnSe Doped with Ag. J. Mater. Chem. A 2014, 2, 11171–11176. [Google Scholar] [CrossRef]
- Huo, H.; Zhang, Y.; Guo, K.; Yang, X.; Xing, J.; Li, S.; Zhang, J.; Luo, J. Improvement of Anisotropic Thermoelectric Performance in Polycrystalline SnSe by Metallic AgSnSe2 Compositing. J. Alloys Compd. 2022, 908, 164649. [Google Scholar] [CrossRef]
- Vasudevan, R.; Zhang, L.; Ren, Q.; Wu, J.; Cheng, Z.; Wang, J.; Lin, S.; Zhu, F.; Zhang, Y.; Hölzel, M.; et al. Secondary Phase Effect on the Thermoelectricity by Doping Ag in SnSe. J. Alloys Compd. 2022, 923, 166251. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- de Boor, J.; Zabrocki, K.; Frohring, J.; Müller, E. Electrical Conductivity Measurements on Disk-Shaped Samples. Rev. Sci. Instrum. 2014, 85, 075104. [Google Scholar] [CrossRef]
Series | Sample Name (Atomic % of Dopant) | a (Å) | b (Å) | c (Å) | SnSe % | SnSe2 % | Density (g/cm3) |
---|---|---|---|---|---|---|---|
pure SnSe | SnSe | 11.4976 ± 0.0003 | 4.1541 ± 0.0002 | 4.4437 ± 0.0002 | 90 | 10 | 5.940 |
SnSe phase dopant Sb | Sb1 (0.89) | 11.4986 ± 0.0002 | 4.1529 ± 0.0002 | 4.4480 ± 0.0003 | 99 | 1 | 6.011 |
Sb3 (1.94) | 11.4957 ± 0.0005 | 4.1529 ± 0.0004 | 4.4271 ± 0.0005 | 100 | 0 | 5.956 | |
Sb7 (3.60) | 11.5036 ± 0.0018 | 4.1621 ± 0.0011 | 4.4115 ± 0.0014 | 100 | 0 | 5.963 | |
SnSe phase dopant Bi | Bi1 (2.16) | 11.5414 ± 0.0019 | 4.1268 ± 0.0018 | 4.4417 ± 0.0019 | 95 | 5 | 5.973 |
Bi3 (3.58) | 11.5042 ± 0.0010 | 4.1541 ± 0.0010 | 4.3865 ± 0.0010 | 100 | 0 | 5.963 | |
Bi5 (4.94) | 11.5106 ± 0.0003 | 4.1649 ± 0.0003 | 4.4375 ± 0.0004 | 97 | 3 | 6.017 | |
Bi7 (6.13) | 11.5080 ± 0.0018 | 4.1628 ± 0.0007 | 4.4176 ± 0.0012 | 100 | 0 | 6.064 | |
SnSe phase dopant Ag | Ag1 (0.64) | 11.4995 ± 0.0003 | 4.1533 ± 0.0003 | 4.4503 ± 0.0003 | 88 | 12 | 6.057 |
Ag3 (1.36) | 11.4998 ± 0.0005 | 4.1560 ± 0.0004 | 4.4463 ± 0.0005 | 93 | 7 | 6.036 | |
Ag5 (2.15) | 11.4965 ± 0.0005 | 4.1548 ± 0.0004 | 4.4465 ± 0.0005 | 94 | 6 | 6.025 | |
Ag7 (2.57) | 11.4982 ± 0.0005 | 4.1526 ± 0.0006 | 4.4471 ± 0.0006 | 92 | 8 | 6.062 | |
SnSe phase dopant Ni | Ni1 (1.92) | 11.4985 ± 0.0003 | 4.1541 ± 0.0003 | 4.4450 ± 0.0003 | 100 | 0 | 6.045 |
Ni3 (3.16) | 11.4976 ± 0.0003 | 4.1519 ± 0.0004 | 4.4380 ± 0.0004 | 100 | 0 | 6.003 | |
Ni5 (4.21) | 11.4977 ± 0.0009 | 4.1559 ± 0.0006 | 4.4484 ± 0.0006 | 100 | 0 | 6.062 | |
Ni7 (4.81) | 11.4966 ± 0.0004 | 4.1536 ± 0.0003 | 4.4454 ± 0.0003 | 100 | 0 | 6.069 | |
SnSe phase dopant Mg | Mg1 (3.8) | 11.4971 ± 0.0005 | 4.1560 ± 0.0004 | 4.4454 ± 0.0004 | 100 | 0 | 5.947 |
Mg3 (7.65) | 11.4993 ± 0.0006 | 4.1572 ± 0.0004 | 4.4494 ± 0.0003 | 100 | 0 | 6.014 | |
Mg5 (7.69) | 11.4929 ± 0.0004 | 4.1506 ± 0.0003 | 4.4431 ± 0.0003 | 100 | 0 | 5.975 | |
Mg7 (9.8) | 11.4916 ± 0.0010 | 4.1492 ± 0.0006 | 4.4415 ± 0.0007 | 100 | 0 | 5.907 | |
SnSe phase dopant In | In1 (1.67) | 11.4965 ± 0.0005 | 4.1546 ± 0.0005 | 4.4488 ± 0.0006 | 83 | 17 | 6.027 |
In3 (3.10) | 11.4989 ± 0.0004 | 4.1531 ± 0.0002 | 4.4433 ± 0.0003 | 93 | 7 | 6.036 | |
In5 (4.30) | 11.4978 ± 0.0005 | 4.1578 ± 0.0005 | 4.4511 ± 0.0004 | 96 | 4 | 6.001 | |
In7 (5.94) | 11.5010 ± 0.0006 | 4.1581 ± 0.0005 | 4.4466 ± 0.0005 | 93 | 7 | 6.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihok, F.; Hricková, G.; Puchý, V.; Szabó, J.; Ballóková, B.; Džunda, R.; Saksl, K. Effect of Multiple Doping Elements on Polarity Switching of Polycrystalline SnSe Semiconductor. Inorganics 2024, 12, 103. https://doi.org/10.3390/inorganics12040103
Mihok F, Hricková G, Puchý V, Szabó J, Ballóková B, Džunda R, Saksl K. Effect of Multiple Doping Elements on Polarity Switching of Polycrystalline SnSe Semiconductor. Inorganics. 2024; 12(4):103. https://doi.org/10.3390/inorganics12040103
Chicago/Turabian StyleMihok, František, Gabriela Hricková, Viktor Puchý, Juraj Szabó, Beáta Ballóková, Róbert Džunda, and Karel Saksl. 2024. "Effect of Multiple Doping Elements on Polarity Switching of Polycrystalline SnSe Semiconductor" Inorganics 12, no. 4: 103. https://doi.org/10.3390/inorganics12040103
APA StyleMihok, F., Hricková, G., Puchý, V., Szabó, J., Ballóková, B., Džunda, R., & Saksl, K. (2024). Effect of Multiple Doping Elements on Polarity Switching of Polycrystalline SnSe Semiconductor. Inorganics, 12(4), 103. https://doi.org/10.3390/inorganics12040103