Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition
Abstract
:1. Introduction to PLD
1.1. Background and Developments
1.2. Working Princple
2. Halide Perovskite Materials
2.1. Structure and Property
2.2. Preparation of Perovskites
2.2.1. Solution Deposition Method
2.2.2. Vapour Deposition Method
2.3. Application in Photoelectric Devices
3. PLD Preparation of Perovskite Solar Cells
3.1. Hybrid Perovskite Layer
3.2. Inorganic Perovskite Layer
3.3. Electron Transport Layers
3.4. Hole Transport Layers
3.5. Surface Plasmons in PSCs
4. Conclusions
Funding
Conflicts of Interest
References
- Smith, H.M.; Turner, A.F. Vacuum Deposited Thin Films Using a Ruby Laser. Appl. Opt. 1965, 4, 147–148. [Google Scholar] [CrossRef]
- Dijkkamp, D.; Venkatesan, T.; Wu, X.D.; Shaheen, S.A.; Jisrawi, N.; Min-Lee, Y.H.; McLean, W.L.; Croft, M. Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high T c bulk material. Appl. Phys. Lett. 1987, 51, 619–621. [Google Scholar] [CrossRef]
- Haider, A.J.; Alawsi, T.; Haider, M.J.; Taha, B.A.; Marhoon, H.A. A comprehensive review on pulsed laser deposition technique to effective nanostructure production: Trends and challenges. Opt. Quantum Electron. 2022, 54, 488. [Google Scholar] [CrossRef]
- Duta, L.; Popescu, A.C. Current Research in Pulsed Laser Deposition. Coatings 2021, 11, 274. [Google Scholar] [CrossRef]
- Willmott, P.R.; Huber, J.R. Pulsed laser vaporization and deposition. Rev. Mod. Phys. 2000, 72, 315–328. [Google Scholar] [CrossRef]
- Wagner, G.; Lange, U.; Bente, K.; Lenzner, J.; Lorenz, M. Defect structure of monocrystalline (001)-oriented Zn0.62Cu0.19In0.19S films grown on GaP by pulsed laser deposition (PLD). J. Cryst. Growth 2000, 209, 68–74. [Google Scholar] [CrossRef]
- Mao, W.; Gong, W.; Gu, Z.; Wilde, M.; Chen, J.; Fukutani, K.; Matsuzaki, H.; Fugetsu, B.; Sakata, I.; Terai, T. Hydrogen diffusion in cerium oxide thin films fabricated by pulsed laser deposition. Int. J. Hydrogen Energy 2024, 50, 969–978. [Google Scholar] [CrossRef]
- Ullrich, B.; Brown, G. Room temperature photoluminescence of amorphous GaAs. Mater. Lett. 2009, 63, 2489–2491. [Google Scholar] [CrossRef]
- Shen, Y.; Hong, J.-I.; Xu, S.; Lin, S.; Fang, H.; Zhang, S.; Ding, Y.; Snyder, R.L.; Wang, Z.L. A General Approach for Fabricating Arc-Shaped Composite Nanowire Arrays by Pulsed Laser Deposition. Adv. Funct. Mater. 2010, 20, 703–707. [Google Scholar] [CrossRef]
- Fourmont, P.; Gerlein, L.F.; Fortier, F.-X.; Cloutier, S.G.; Nechache, R. Highly Efficient Thermoelectric Microgenerators Using Nearly Room Temperature Pulsed Laser Deposition. ACS Appl. Mater. Interfaces 2018, 10, 10194–10201. [Google Scholar] [CrossRef]
- Kobayashi, T.; Ogawa, H.; Nabeshima, F.; Maeda, A. Interface superconductivity in FeSe thin films on SrTiO3 grown by the PLD technique. Supercond. Sci. Technol. 2022, 35, 07LT01. [Google Scholar] [CrossRef]
- Bhandari, S.; Hao, B.; Waters, K.; Lee, C.H.; Idrobo, J.-C.; Zhang, D.; Pandey, R.; Yap, Y.K. Two-Dimensional Gold Quantum Dots with Tunable Bandgaps. ACS Nano 2019, 13, 4347–4353. [Google Scholar] [CrossRef] [PubMed]
- Serna, M.I.; Yoo, S.H.; Moreno, S.; Xi, Y.; Oviedo, J.P.; Choi, H.; Alshareef, H.N.; Kim, M.J.; Minary-Jolandan, M.; Quevedo-Lopez, M.A. Large-Area Deposition of MoS2 by Pulsed Laser Deposition with In Situ Thickness Control. ACS Nano 2016, 10, 6054–6061. [Google Scholar] [CrossRef]
- Zubir, N.S.M.; Zhang, H.; Zou, G.; Bai, H.; Deng, Z.; Feng, B.; Wu, A.; Liu, L.; Zhou, Y.N. Large-Area Die-Attachment Sintered by Organic-Free Ag Sintering Material at Low Temperature. J. Electron. Mater. 2019, 48, 7562–7572. [Google Scholar] [CrossRef]
- Jia, Q.; Zou, G.; Wang, W.; Ren, H.; Zhang, H.; Deng, Z.; Feng, B.; Liu, L. Sintering Mechanism of a Supersaturated Ag–Cu Nanoalloy Film for Power Electronic Packaging. ACS Appl. Mater. Interfaces 2020, 12, 16743–16752. [Google Scholar] [CrossRef]
- Juvaid, M.M.; Sarkar, S.; Gogoi, P.K.; Ghosh, S.; Annamalai, M.; Lin, Y.-C.; Prakash, S.; Goswami, S.; Li, C.; Hooda, S.; et al. Direct Growth of Wafer-Scale, Transparent, p-Type Reduced-Graphene-Oxide-like Thin Films by Pulsed Laser Deposition. ACS Nano 2020, 14, 3290–3298. [Google Scholar] [CrossRef]
- Shin, Y.J.; Kim, Y.; Kang, S.; Nahm, H.; Murugavel, P.; Kim, J.R.; Cho, M.R.; Wang, L.; Yang, S.M.; Yoon, J.; et al. Interface Control of Ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 Capacitor and its Critical Thickness. Adv. Mater. 2017, 29, 1602795. [Google Scholar] [CrossRef]
- Shepelin, N.A.; Tehrani, Z.P.; Ohannessian, N.; Schneider, C.W.; Pergolesi, D.; Lippert, T. A practical guide to pulsed laser deposition. Chem. Soc. Rev. 2023, 52, 2294–2321. [Google Scholar] [CrossRef] [PubMed]
- Vatsya, S.R.; Virk, K.S. Solution of two-temperature thermal diffusion model of laser–metal interactions. J. Laser Appl. 2003, 15, 273–278. [Google Scholar] [CrossRef]
- Stoian, R.; Boyle, M.; Thoss, A.; Rosenfeld, A.; Korn, G.; Hertel, I.V.; Campbell, E.E.B. Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl. Phys. Lett. 2002, 80, 353–355. [Google Scholar] [CrossRef]
- Ojeda-G-P, A.; Schneider, C.W.; Döbeli, M.; Lippert, T.; Wokaun, A. The importance of pressure and mass ratios when depositing multi-element oxide thin films by pulsed laser deposition. Appl. Surf. Sci. 2016, 389, 126–134. [Google Scholar] [CrossRef]
- Xiang, W.; Tress, W. Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells. Adv. Mater. 2019, 31, e1902851. [Google Scholar] [CrossRef] [PubMed]
- Jacak, J.E.; Jacak, W.A. Routes for Metallization of Perovskite Solar Cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of solar cells, exciton channel of plasmon photovoltaic effect in perovskite cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Li, W.; Zhu, L.; Chen, H. Inorganic perovskite solar cells based on carbon electrodes. Nano Energy 2020, 77, 105160. [Google Scholar] [CrossRef]
- Chen, Y.; Li, F.; Zhang, M.; Yang, Z. Recent Progress on Boosting the Perovskite Film Quality of All-Inorganic Perovskite Solar Cells. Coatings 2023, 13, 281. [Google Scholar] [CrossRef]
- Chakrabartty, J.; Harnagea, C.; Celikin, M.; Rosei, F.; Nechache, R. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics 2018, 12, 271–276. [Google Scholar] [CrossRef]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef]
- Kim, H.-S.; Seo, J.-Y.; Park, N.-G. Material and Device Stability in Perovskite Solar Cells. ChemSusChem 2016, 9, 2528–2540. [Google Scholar] [CrossRef]
- Kim, H.-S.; Im, S.H.; Park, N.-G. Organolead Halide Perovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C 2014, 118, 5615–5625. [Google Scholar] [CrossRef]
- Alzahrani, H.S.; Al-Sulami, A.I.; Alsulami, Q.A.; Rajeh, A. A systematic study of structural, conductivity, linear, and nonlinear optical properties of PEO/PVA-MWCNTs/ZnO nanocomposites films for optoelectronic applications. Opt. Mater. 2022, 133, 112900. [Google Scholar] [CrossRef]
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M.K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319. [Google Scholar] [CrossRef] [PubMed]
- Bi, D.; Moon, S.-J.; Häggman, L.; Boschloo, G.; Yang, L.; Johansson, E.M.J.; Nazeeruddin, M.K.; Grätzel, M.; Hagfeldt, A. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 2013, 3, 18762–18766. [Google Scholar] [CrossRef]
- Basiricò, L.; Senanayak, S.P.; Ciavatti, A.; Abdi-Jalebi, M.; Fraboni, B.; Sirringhaus, H. Detection of X-Rays by Solution-Processed Cesium-Containing Mixed Triple Cation Perovskite Thin Films. Adv. Funct. Mater. 2019, 29, 1902346. [Google Scholar] [CrossRef]
- Pandey, S.; Ko, J.; Park, B.; Byun, J.; Lee, M.-J. Single crystal Perovskite-Based solar Cells: Growth, Challenges, and potential strategies. Chem. Eng. J. 2023, 466, 143019. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, M.; Gao, B.; Chen, W.; Li, Q.; Xu, Q.; Dong, S. Preparation of CH3NH3PbI3 thin films with tens of micrometer scale at high temperature. Sci. Rep. 2017, 7, 8458. [Google Scholar] [CrossRef]
- Sun, J.; Wu, J.; Tong, X.; Lin, F.; Wang, Y.; Wang, Z.M. Organic/Inorganic Metal Halide Perovskite Optoelectronic Devices beyond Solar Cells. Adv. Sci. 2018, 5, 1700780. [Google Scholar] [CrossRef]
- Abbas, Z.; Azam, S.; Bashir, A.I.; Marriam, A.; Waqas, M.; Alshahrani, T.; Haq, B.U. A systematic study on optoelectronic properties of Mn4+-activated Zr-based hexafluoride red phosphors X2ZrF6 (X = K, Na, Cs): First-principles investigation and prospects for warm-white LEDs applications. Phys. Scr. 2020, 96, 015801. [Google Scholar] [CrossRef]
- Tian, J.; Wang, J.; Xue, Q.; Niu, T.; Yan, L.; Zhu, Z.; Li, N.; Brabec, C.J.; Yip, H.-L.; Cao, Y. Composition Engineering of All-Inorganic Perovskite Film for Efficient and Operationally Stable Solar Cells. Adv. Funct. Mater. 2020, 30, 2001764. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Wang, H.; Ma, M.; Dong, S.; Xu, Q. Influence of drying temperature on morphology of MAPbI3 thin films and the performance of solar cells. J. Alloys Compd. 2019, 773, 511–518. [Google Scholar] [CrossRef]
- Wu, W.-Q.; Yang, Z.; Rudd, P.N.; Shao, Y.; Dai, X.; Wei, H.; Zhao, J.; Fang, Y.; Wang, Q.; Liu, Y.; et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci. Adv. 2019, 5, eaav8925. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ma, F.; Gao, F.; Yin, Z.; Zhang, X.; You, J. Research progress in large-area perovskite solar cells. Photonics Res. 2020, 8, A1–A15. [Google Scholar] [CrossRef]
- Zhang, Z.; Ba, Y.; Chen, D.; Ma, J.; Zhu, W.; Xi, H.; Chen, D.; Zhang, J.; Zhang, C.; Hao, Y. Generic water-based spray-assisted growth for scalable high-efficiency carbon-electrode all-inorganic perovskite solar cells. iScience 2021, 24, 103365. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Li, P.; Gu, H.; Zhang, Y.; Li, F.; Song, Y.; Shao, G.; Mathews, N.; Xing, G. One-Step Inkjet Printed Perovskite in Air for Efficient Light Harvesting (Solar RRL 2/2018). Sol. RRL 2018, 2, 1770150. [Google Scholar] [CrossRef]
- Im, J.-H.; Kim, H.-S.; Park, N.-G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2014, 2, 081510. [Google Scholar] [CrossRef]
- Tai, Q.; Tang, K.-C.; Yan, F. Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 2019, 12, 2375–2405. [Google Scholar] [CrossRef]
- Khazaee, M.; Sardashti, K.; Sun, J.-P.; Zhou, H.; Clegg, C.; Hill, I.G.; Jones, J.L.; Lupascu, D.C.; Mitzi, D.B. A Versatile Thin-Film Deposition Method for Multidimensional Semiconducting Bismuth Halides. Chem. Mater. 2018, 30, 3538–3544. [Google Scholar] [CrossRef]
- Becker, P.; Márquez, J.A.; Just, J.; Al-Ashouri, A.; Hages, C.; Hempel, H.; Jošt, M.; Albrecht, S.; Frahm, R.; Unold, T. Low Temperature Synthesis of Stable γ-CsPbI3 Perovskite Layers for Solar Cells Obtained by High Throughput Experimentation. Adv. Energy Mater. 2019, 9, 1900555. [Google Scholar] [CrossRef]
- Liu, X.; Tan, X.; Liu, Z.; Sun, B.; Li, J.; Xi, S.; Shi, T.; Liao, G. Sequentially vacuum evaporated high-quality CsPbBr3 films for efficient carbon-based planar heterojunction perovskite solar cells. J. Power Sources 2019, 443, 227269. [Google Scholar] [CrossRef]
- Shahiduzzaman, M.; Yonezawa, K.; Yamamoto, K.; Ripolles, T.S.; Karakawa, M.; Kuwabara, T.; Takahashi, K.; Hayase, S.; Taima, T. Improved Reproducibility and Intercalation Control of Efficient Planar Inorganic Perovskite Solar Cells by Simple Alternate Vacuum Deposition of PbI2 and CsI. ACS Omega 2017, 2, 4464–4469. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, W.; Zuo, X.; Gu, X.; Zhang, S.; Du, Y.; Wang, Z.; Liu, Y.; Wu, H.; Wang, P.; et al. Fluorine-Containing Passivation Layer via Surface Chelation for Inorganic Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202216634. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Lou, Y.; Zhou, Y.; Wang, Z. Environment-Friendly Perovskite Light-Emitting Diodes: Progress and Perspective. Adv. Mater. Interfaces 2022, 9, 2200772. [Google Scholar] [CrossRef]
- Zhang, N.; Na, Q.; Xie, Q.; Jia, S. Development of Solution-Processed Perovskite Semiconductors Lasers. Crystals 2022, 12, 1274. [Google Scholar] [CrossRef]
- Tian, J.; Tan, Q.Y.; Wang, Y.; Yang, Y.; Yuan, G.; Adamo, G.; Soci, C. Perovskite quantum dot one-dimensional topological laser. Nat. Commun. 2023, 14, 1433. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Huang, K.-W.; Chen, Y.-T.; Hsueh, S.-L.; Li, M.-H.; Chen, P. Perovskite-Based X-ray Detectors. Nanomaterials 2023, 13, 2024. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Fan, Z.; Dong, J. Research Progress of Green Solvent in CsPbBr3 Perovskite Solar Cells. Nanomaterials 2023, 13, 991. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Z.; Jia, C.; Wan, Z.; Zhi, C.; Li, C.; Zhang, M.; Zhang, C.; Li, Z. Annealing free tin oxide electron transport layers for flexible perovskite solar cells. Nano Energy 2022, 94, 106919. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, X.; Feng, J.; Wang, C.; Zhang, C.; Ren, X.; Priya, S.; Liu, S.; Yang, D. Antisolvent- and Annealing-Free Deposition for Highly Stable Efficient Perovskite Solar Cells via Modified ZnO. Adv. Sci. 2021, 8, 2002860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; He, Q.; Yu, J.; Chen, A.; Zhang, Z.; Pan, J. Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy 2022, 104, 107918. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Ma, M.; Wu, Y.; Dong, S.; Xu, Q. Application of Compact TiO2 Layer Fabricated by Pulsed Laser Deposition in Organometal Trihalide Perovskite Solar Cells. Sol. RRL 2018, 2, 1800097. [Google Scholar] [CrossRef]
- Singh, R.; Singh, P.K.; Bhattacharya, B.; Rhee, H.-W. Review of current progress in inorganic hole-transport materials for perovskite solar cells. Appl. Mater. Today 2018, 14, 175–200. [Google Scholar] [CrossRef]
- Leupold, N.; Panzer, F. Recent Advances and Perspectives on Powder-Based Halide Perovskite Film Processing. Adv. Funct. Mater. 2021, 31, 2007350. [Google Scholar] [CrossRef]
- Hong, Z.; Tan, D.; John, R.A.; Tay, Y.K.E.; Ho, Y.K.T.; Zhao, X.; Sum, T.C.; Mathews, N.; García, F.; Soo, H.S. Completely Solvent-free Protocols to Access Phase-Pure, Metastable Metal Halide Perovskites and Functional Photodetectors from the Precursor Salts. iScience 2019, 16, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Bansode, U.; Naphade, R.; Game, O.; Agarkar, S.; Ogale, S. Hybrid Perovskite Films by a New Variant of Pulsed Excimer Laser Deposition: A Room-Temperature Dry Process. J. Phys. Chem. C 2015, 119, 9177–9185. [Google Scholar] [CrossRef]
- Bansode, U.; Ogale, S. On-axis pulsed laser deposition of hybrid perovskite films for solar cell and broadband photo-sensor applications. J. Appl. Phys. 2017, 121, 133107. [Google Scholar] [CrossRef]
- Soto-Montero, T.; Kralj, S.; Soltanpoor, W.; Solomon, J.S.; Gómez, J.S.; Zanoni, K.P.S.; Paliwal, A.; Bolink, H.J.; Baeumer, C.; Kentgens, A.P.M.; et al. Single-Source Vapor-Deposition of MA1–xFAxPbI3 Perovskite Absorbers for Solar Cells. Adv. Funct. Mater. 2023. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Ma, M.; Dong, S.; Li, Q.; Du, J.; Zhang, H.; Xu, Q. Pulsed Laser Deposition of CsPbBr3 Films for Application in Perovskite Solar Cells. ACS Appl. Energy Mater. 2019, 2, 2305–2312. [Google Scholar] [CrossRef]
- Zanoni, K.P.S.; Pérez-Del-Rey, D.; Dreessen, C.; Rodkey, N.; Sessolo, M.; Soltanpoor, W.; Morales-Masis, M.; Bolink, H.J. Tin(IV) Oxide Electron Transport Layer via Industrial-Scale Pulsed Laser Deposition for Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 32621–32628. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Du, B.K.; Huang, C.; Lin, P.; Zhao, J.L.; Zeng, X.R.; Ke, S.M. Designing electron transporting layer for efficient perovskite solar cell by deliberating over nano-electrical conductivity. Sol. Energy Mater. Sol. Cells 2019, 200, 109995. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, H.; Jin, X.; Wang, H.; Wang, P.; Ijaz, M.; Xu, Q. Highly stable all-inorganic CsPbBr3 perovskite solar cells based on pulsed laser deposition. Appl. Phys. Lett. 2023, 123, 092103. [Google Scholar] [CrossRef]
- Feng, M.; Wang, M.; Zhou, H.; Li, W.; Wang, S.; Zang, Z.; Chen, S. High-Efficiency and Stable Inverted Planar Perovskite Solar Cells with Pulsed Laser Deposited Cu-Doped NiOx Hole-Transport Layers. ACS Appl. Mater. Interfaces 2020, 12, 50684–50691. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhao, P.; Wang, C.; Wang, Y.; Hu, Y.; Zhu, G.; Ma, L.; Liu, J.; Jin, Z. CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. J. Am. Chem. Soc. 2017, 139, 14009–14012. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Duan, J.; Zhang, J.; Zhang, Q.; Duan, Y.; Yang, X.; He, B.; Zhao, Y.; Tang, Q. Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Adv. Mater. 2022, 34, e2202301. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Wang, C.; Wang, Y.; Xu, Z.; Lu, Z.; Ma, Y.; Zhu, H.; Hu, Y.; Xiao, C.; Yi, X.; et al. All-Inorganic Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 15829–15832. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Song, S.; Liu, Z.; Wang, H.; Wang, B.; Guan, J.; Zhang, H.; Xu, Q. High-Stability Patterned CsPbIxBr3−x Thin Films with Tunable Crystal Size Prepared by Solid-Phase Reaction. Adv. Opt. Mater. 2021, 9, 2101175. [Google Scholar] [CrossRef]
- Zhao, H.; Xu, J.; Zhou, S.; Li, Z.; Zhang, B.; Xia, X.; Liu, X.; Dai, S.; Yao, J. Preparation of Tortuous 3D γ-CsPbI3 Films at Low Temperature by CaI2 as Dopant for Highly Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1808986. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, F.; Wang, Q.; Ding, L.; Jin, Z. Approaches for thermodynamically stabilized CsPbI3 solar cells. Nano Energy 2020, 71, 104634. [Google Scholar] [CrossRef]
- Meng, L.; Wei, Z.; Zuo, T.; Gao, P. Finding junction partners for CsPbI3 in a two-terminal tandem solar cell: A theoretical prospect. Nano Energy 2020, 75, 104866. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Yan, R.; Zhang, J.; Zhou, F.; Li, X.; Wang, C.; Wang, H.; Wang, X.; Zhang, D.; et al. Fabrication and characterization of the red photodetector based on CsPbI3/n-Si heterojunction. Opt. Mater. 2021, 111, 110731. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef]
- Zhou, Q.; Duan, J.; Du, J.; Guo, Q.; Zhang, Q.; Yang, X.; Duan, Y.; Tang, Q. Tailored Lattice “Tape” to Confine Tensile Interface for 11.08%-Efficiency All-Inorganic CsPbBr3 Perovskite Solar Cell with an Ultrahigh Voltage of 1.702 V. Adv. Sci. 2021, 8, 2101418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ijaz, M.; Blaikie, R.J. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Front. Phys. 2023, 18, 63602. [Google Scholar] [CrossRef]
- Li, P.; Jiang, X.; Huang, S.; Liu, Y.; Fu, N. Plasmonic perovskite solar cells: An overview from metal particle structure to device design. Surf. Interfaces 2021, 25, 101287. [Google Scholar] [CrossRef]
- Ijaz, M.; Zhang, H.; Chan, S.V.; Holt, R.; Davis, N.J.L.K.; Blaikie, R.J. Plasmonically coupled semiconductor quantum dots for efficient hydrogen photoelectrocatalysis. Appl. Phys. Lett. 2023, 123, 053901. [Google Scholar] [CrossRef]
- Qiu, C.; Zhang, H.; Tian, C.; Jin, X.; Song, Q.; Xu, L.; Ijaz, M.; Blaikie, R.J.; Xu, Q. Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection. Appl. Phys. Lett. 2023, 122, 243502. [Google Scholar] [CrossRef]
- Ijaz, M.; Zhang, H.; Xu, L.; Blaikie, R.J. Angle-resolved and time-resolved spectroscopic study on large-area silver gratings fabricated via optical interference lithography. Appl. Phys. Lett. 2023, 123, 041107. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, F.; Blaikie, R.J.; Ding, B.; Qiu, M. Bifacial omnidirectional and band-tunable light absorption in free-standing core–shell resonators. Appl. Phys. Lett. 2022, 120, 181110. [Google Scholar] [CrossRef]
- Mohammadi, M.H.; Eskandari, M.; Fathi, D. Effects of the location and size of plasmonic nanoparticles (Ag and Au) in improving the optical absorption and efficiency of perovskite solar cells. J. Alloys Compd. 2021, 877, 160177. [Google Scholar] [CrossRef]
- Gezgin, S.Y.; Kılıç, H. An improvement on the conversion efficiency of Si/CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles. Opt. Mater. 2020, 101, 109760. [Google Scholar] [CrossRef]
- Zhang, W.; Saliba, M.; Stranks, S.D.; Sun, Y.; Shi, X.; Wiesner, U.; Snaith, H.J. Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano Lett. 2013, 13, 4505–4510. [Google Scholar] [CrossRef]
- Alkhalayfeh, M.A.; Aziz, A.A.; Pakhuruddin, M.Z.; Katubi, K.M.M. Recent Advances of Perovskite Solar Cells Embedded with Plasmonic Nanoparticles. Phys. Status Solidi (a) 2021, 218, 2100310. [Google Scholar] [CrossRef]
- He, Z.; Zhang, C.; Meng, R.; Luo, X.; Chen, M.; Lu, H.; Yang, Y. Influence of Ag@SiO2 with Different Shell Thickness on Pho-toelectric Properties of Hole-Conductor-Free Perovskite Solar Cells. Nanomaterials 2020, 10, 2364. [Google Scholar] [CrossRef] [PubMed]
Device Structure | Voc (V) | Jsc (mA·cm−2) | FF | PCE (%) | Ref. |
---|---|---|---|---|---|
ITO/ZnO/PLD-MAPbI3−xClx/spiro-OMeTAD/Au | 0.97 | 11.08 | 67.7 | 7.66 | [64] |
FTO/TiO2/PLD-MAPbBr3/spiro-OMeTAD/Au | 0.98 | 20.13 | 54 | 10.9 | [65] |
ITO/SnO2/PCBM/PLD-MA0.55FA0.45PbI3/spiro-OMeTAD/Au | 1.0 | 19.9 | 70.5 | 14.0 | [66] |
FTO/c-TiO2/m-TiO2/PLD-CsPbBr3/spiro-OMeTAD/Ag | 1.37 | 6.41 | 72 | 6.32 | [67] |
ITO/PLD-SnOx/C60/MAPbI3/TaTm/TPBi/MoO3/Ag | 1.11 | 21.4 | 77 | 18.1 | [68] |
FTO/PLD-TiO2/FA0.75MA0.25PbI2.5Br0.5/spiro-OMeTAD/Au | 1.08 | 21.8 | 72 | 17 | [69] |
FTO/PLD-c-TiO2/m-TiO2/MAPbI3/spiro-OMeTAD/Ag | 1.0 | 21.83 | 63.98 | 13.95 | [60] |
FTO/c-TiO2/m-TiO2/PLD-CsPbBr3/PLD-NiOx/Ag | 1.38 | 6.70 | 59.24 | 5.47 | [70] |
FTO/PLD-NiOx/FA0.2MA0.8PbI3−xClx/PCBM/RhB101/LiF/Ag | 1.11 | 23.17 | 79.1 | 20.41 | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Fan, X.; Zhang, H.; Xu, Q.; Ijaz, M. Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition. Inorganics 2024, 12, 128. https://doi.org/10.3390/inorganics12050128
Lu X, Fan X, Zhang H, Xu Q, Ijaz M. Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition. Inorganics. 2024; 12(5):128. https://doi.org/10.3390/inorganics12050128
Chicago/Turabian StyleLu, Xinyu, Xingjian Fan, Hao Zhang, Qingyu Xu, and Mohsin Ijaz. 2024. "Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition" Inorganics 12, no. 5: 128. https://doi.org/10.3390/inorganics12050128
APA StyleLu, X., Fan, X., Zhang, H., Xu, Q., & Ijaz, M. (2024). Review on Preparation of Perovskite Solar Cells by Pulsed Laser Deposition. Inorganics, 12(5), 128. https://doi.org/10.3390/inorganics12050128