Enhancing Supercapacitor Performance with Zero-Dimensional Tin–Niobium Oxide Heterostructure Composite Spheres: Electrochemical Insights
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction Pattern Analysis
2.2. Raman Spectroscopy Analysis
2.3. FE-SEM Image Analysis
2.4. HR-TEM Surface Analysis
2.5. X-ray Photoelectron Microscopy Analysis
2.6. Electrochemical Analysis
2.7. Electrochemical Cycling Stability
3. Experimental Section
3.1. Materials and Methods
3.2. Preparation of 0D SnNb2O6 Heterostructure Sphere
3.3. Materials Characterization
3.4. Active Material Preparation and Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aricò, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer-Plenum: New York, NY, USA, 1999. [Google Scholar]
- Burke, A. Ultracapacitors: Why, how, and where is the technology. J. Power Sources 2000, 91, 37–50. [Google Scholar] [CrossRef]
- Kotz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498. [Google Scholar] [CrossRef]
- Chu, A.; Braatz, P. Comparison of commercial supercapacitors and highpower lithium-ion batteries for power-assist applications in hybrid electric vehicles I. Initial characterization. J. Power Sources 2002, 112, 236–246. [Google Scholar] [CrossRef]
- Goikolea, E.; Mysyk, R. Nanotechnology in Electrochemical Capacitors. In Emerging Nanotechnologies in Rechargable Energy Storage Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–169. [Google Scholar] [CrossRef]
- Yang, W.; Ni, M.; Ren, X.; Tian, Y.; Li, N.; Su, Y.; Zhang, X. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. [Google Scholar] [CrossRef]
- Pan, H.; Li, J.; Feng, Y.P. Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 2010, 5, 654–668. [Google Scholar] [CrossRef] [PubMed]
- Chmiola, J.; Largeot, C.; Taberna, P.-L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328, 480–483. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, Y.; Chen, W.; Ge, J.; An, L.; Sun, L. Titanium suboxide (Ti2O) as a new anode material for lithium-ion batteries. Electrochem. Commun. 2013, 30, 73–76. [Google Scholar]
- Lee, S.W.; Gallant, B.M.; Byon, H.R.; Hammond, P.T.; Shao-Horn, Y. Nanostructured carbon-based electrodes: Bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ. Sci. 2011, 4, 1972–1985. [Google Scholar] [CrossRef]
- Ma, W.; Zhou, W.; Yang, F.; Liu, Z.; Cui, G.; Yin, W.; Zhao, D. FeO nanoparticles embedded in nitrogen-doped porous carbon nanosheets as high-performance anode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 7077–7085. [Google Scholar]
- Guo, Y.; Zhu, Z.; Chen, Y.; He, H.; Li, X.; Qin, T.; Wang, Y. High-Performance Supercapacitors of Ruthenium-Based Nanohybrid Compounds. J. Alloys Compd. 2020, 842, 155798. [Google Scholar] [CrossRef]
- Nguyen, T.; Boudard, M.; Carmezim, M.J.; Montemor, M.F. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci. Rep. 2017, 7, 39980. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Li, S.; Wang, X.; Wei, F. Recent advances in transition metal-based bimetallic oxide composites for electrochemical energy storage. Energy Storage Mater. 2020, 27, 28–52. [Google Scholar] [CrossRef]
- Balaji, T.E.; Tanaya Das, H.; Maiyalagan, T. Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications. ChemElectroChem 2021, 8, 1723–1746. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828. [Google Scholar] [CrossRef]
- Elyazed, A.S.A.; Hassan, S.; Ashry, A.G.; Hegazy, M. Facile, Efficient, and Cheap Electrode based on SnO2/Activated Carbon Waste for Supercapacitor and Capacitive Deionization Applications. ACS Omega 2022, 7, 19714–19720. [Google Scholar] [CrossRef]
- Wang, X.; Fan, H.; Ren, P. UV light-assisted synthesis of coral SnO2: Characterization and its enhanced photocatalytic properties. Colloids Surf. A Physicochem. Eng. Asp. 2012, 402, 53–59. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Zhang, W.; Tan, Y.; Tang, T.; Wang, S.; Tang, B.; Zhao, J. SO42-/SnO2 as a new electrode for electrochemical supercapacitors. Ceram. Int. 2014, 40, 8925–8929. [Google Scholar] [CrossRef]
- Gebreslassie, Y.T.; Gebretnsae, H.G. Green and cost-effective synthesis of tin oxide nanoparticles: A review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res. Lett. 2021, 16, 97. [Google Scholar] [CrossRef]
- Mishra, S.R.; Ahmaruzzaman, M. Tin oxide based nanostructured materials synthesis and potential applications. Nanoscale 2022, 14, 1566–1605. [Google Scholar] [CrossRef] [PubMed]
- Bonu, V.; Gupta, B.; Chandra, S.; Das, A.; Dhara, S.; Tyagi, A. Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochim. Acta 2016, 203, 230–237. [Google Scholar] [CrossRef]
- Velmurugan, V.; Srinivasarao, U.; Ramachandran, R.; Saranya, M.; Grace, A.N. Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater. Res. Bull. 2016, 84, 145–151. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Lim, Y.-G.; Park, M.-S.; Chou, S.-L.; Kim, J.H.; Liu, H.-K.; Dou, S.-X.; Kim, Y.-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2014, 2, 529–534. [Google Scholar] [CrossRef]
- Pang, R.; Wang, Z.; Li, J.; Chen, K. Polymorphs of Nb2O5 Compound and Their Electrical Energy Storage Applications. Materials 2023, 16, 6956. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Meng, Q.; Wan, X.; Sun, B.; Zhang, Y.; Shen, B.; Gao, J.; Ma, Y.; Zuo, P.; Lou, S.; et al. Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy 2021, 81, 105635. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Cai, Z.; Fang, G.; Pan, A.; Liang, S. Nb2O5 microstructures: A high-performance anode for lithium ion batteries. Nanotechnology 2016, 27, 46LT01. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, G.; Liu, Y.; Sun, R.; Ma, J.; Guo, J.; Hu, M. Urchin-like hierarchical H-Nb2O5 microspheres: Synthesis, formation mechanism and their applications in lithium ion batteries. Dalton Trans. 2017, 46, 10935–10940. [Google Scholar] [CrossRef] [PubMed]
- Katayama, S.; Hayashi, H.; Kumagai, Y.; Oba, F.; Tanaka, I. Electronic structure and defect chemistry of tin (II) complex oxide SnNb2O6. J. Phys. Chem. C 2016, 120, 9604–9611. [Google Scholar] [CrossRef]
- Zhai, P.; Qin, J.; Guo, L.; Zhao, N.; Shi, C.; Liu, E.Z.; He, F.; Ma, L.; Li, J.; He, C. Smart hybridization of Sn2Nb2O7/SnO2@3D carbon nanocomposites with enhanced sodium storage performance through self-buffering effects. J. Mater. Chem. A 2017, 5, 13052–13061. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, J.; Huang, J.; Li, J.; Qin, Y.; Zhao, T.; Feng, Q. Microwave assisted hydrothermal synthesis of tin niobates nanosheets with high cycle stability as lithium-ion battery anodes. Chin. Chem. Lett. 2019, 30, 771–774. [Google Scholar] [CrossRef]
- Lu, H.; Xiang, K.; Bai, N.; Zhou, W.; Wang, S.; Chen, H. Urchin-shaped Nb2O5 microspheres synthesized by the facile hydrothermal method and their lithium storage performance. Mater. Lett. 2016, 167, 106–108. [Google Scholar] [CrossRef]
- Fu, S.; Yu, Q.; Liu, Z.; Hu, P.; Chen, Q.; Feng, S.; Mai, L.; Zhou, L. Yolk-Shell Nb2O5 Microspheres as Intercalation Pseudocapacitive Anode Materials for High-Energy Li-ion Capacitors. J. Mater. Chem. A 2019, 7, 11234–11240. [Google Scholar] [CrossRef]
- Liu, Q.; Du, Z.; Wang, X.; Wang, R.; Cheng, M.; Hu, J.; Wei, T.; Ling, Y.; Cui, Y.; Wei, Y.; et al. Sandwich-like N-doped carbon coated SnNb2O6 nanosheets for high-rate and long-life lithium storage. J. Alloy. Compd. 2024, 970, 172095. [Google Scholar] [CrossRef]
- Huang, M.; Liu, J.X.; Huang, P.; Hu, H.; Lai, C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021, 40, 425–432. [Google Scholar] [CrossRef]
- Huang, S.; Wang, C.; Sun, H.; Wang, X.; Su, Y. Steering Charge Kinetics of Tin Niobate Photocatalysts: Key Roles of Phase Structure and Electronic Structure. Nanoscale Res. Lett. 2018, 13, 161. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L.; Sun, Y.; Yu, J.; Zhao, Y.; Zhan, X.; Shi, H. Ti3C2 mxene modified SnNb2O6 nanosheets schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution. Sep. Purif. Technol. 2021, 265, 118516. [Google Scholar] [CrossRef]
- Konga, X.; Zhang, J.; Gong, Q.; Huang, J.; Yin, L.; Li, J.; Feng, Q. Sn-C bond on the interface of Sn2Nb2O7-Super P nanocomposite for enhanced electrochemical performance. New J. Chem. 2020, 44, 4478–4485. [Google Scholar] [CrossRef]
- Yu, G.; Liu, C.; Wang, T.; Wei, Y.; Liu, W.; Fu, W.; Wu, X.; Lin, P.; Xu, L.; Cui, C.; et al. Sn-Doped Nb2O5 Films as Effective Hole-Selective Passivating Contacts for Crystalline Silicon Solar Cells. Sol. RRL 2024, 8, 2300772. [Google Scholar] [CrossRef]
- Jeon, T.H.; Bokare, A.D.; Han, D.S.; Abdel-Wahab, A.; Park, H.; Choi, W. Dual modification of hematite photoanode by Sn-doping and Nb2O5 layer for water oxidation. Appl. Catal. B Environ. 2017, 201, 591–599. [Google Scholar] [CrossRef]
- Liang, S.; Zhu, S.; Chen, Y.; Wu, W.; Wang, X.; Wu, L. Rapid template-free synthesis and photocatalytic performance of visible light-activated SnNb2O6 nanosheets. J. Mater. Chem. 2012, 22, 2670–2678. [Google Scholar] [CrossRef]
- Hosogi, Y.; Kato, H.; Kudo, A. Synthesis of SnNb2O6 nanoplates and their photocatalytic properties. Chem. Lett. 2006, 35, 578–579. [Google Scholar] [CrossRef]
- Jin, Y.; Jiang, D.; Li, D.; Xiao, P.; Ma, X.; Chen, M. SrTiO3 nanoparticle/SnNb2O6 nanosheet 0D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic hydrogen evolution activity. ACS Sustain. Chem. Eng. 2017, 5, 9749–9757. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Liu, B.; Dai, W.L. Facile one-step hydrothermal synthesis of single-crystalline SnNb2O6 nanosheets with greatly extended visible-light response for enhanced photocatalytic performance and mechanism insight. Nanotechnology 2021, 32, 065705. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Kakinuma, T. Photocatalytic activity of Sn2M2O7 (M = Nb and ta) pyrochlore oxides with blue LEDs irradiation. J. Ceram. Soc. Jpn. 2012, 120, 551–553. [Google Scholar] [CrossRef]
- Aliasghari, S.; Avcu, E.; Skeldon, P.; Valizadeh, R.; Mingo, B. Abrasion resistance of a Nb3Sn magnetron-sputtered coating on copper substrates for radio frequency superconducting cavities. Mater. Des. 2023, 231, 112030. [Google Scholar] [CrossRef]
- Pudasaini, U.; Eremeev, G.V.; E Reece, C.; Tuggle, J.; Kelley, M.J. Initial growth of tin on niobium for vapor diffusion coating of Nb3Sn. Supercond. Sci. Technol. 2018, 32, 045008. [Google Scholar] [CrossRef]
- Li, Y.; Yan, S.; Qian, L.; Yang, W.; Xie, Z.; Chen, Q.; Yue, B.; He, H. Effect of tin on Nb2O5/α-Al2O3 catalyst for ethylene oxide hydration. J. Catal. 2006, 241, 173–179. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Yang, T.; Wang, Y.; Gao, H.; Wang, X.; Chai, Z. SnNb2O6/NiCo-LDH Z-scheme heterojunction with regulated oxygen vacancies obtained by engineering the crystallinity for efficient and renewable photocatalytic H2 evolution. Catal. Sci. Technol. 2021, 11, 6281–6290. [Google Scholar] [CrossRef]
- Liu, L.; Wu, X.; Gao, F.; Shen, J.; Li, T.; Chu, P.K. Determination of surface oxygen vacancy position in SnO2 nanocrystals by Raman spectroscopy. Solid State Commun. 2011, 151, 811–814. [Google Scholar] [CrossRef]
- Varghese, B.; Haur, S.C.; Lim, C.T. Nb2O5 Nanowires as Efficient Electron Field Emitters. J. Phys. Chem. C 2008, 112, 10008–10012. [Google Scholar] [CrossRef]
- Husson, E.; Repelin, Y.; Dao, N.Q.; Brusset, H. Etude par spectrophotometries d’ absorption infrarouge et de diffusion Raman des niobates de structure columbite. Spectrochim. Acta Part A Mol. Spectrosc. 1977, 33, 995–1001. [Google Scholar] [CrossRef]
- McConnell, A.A.; Aderson, J.S.; Rao, C.N.R. Raman spectra of niobium oxides. Spectrochim. Acta Part A Mol. Spectrosc. 1976, 32, 1067–1076. [Google Scholar] [CrossRef]
- Abello, L.; Bochu, B.; Gaskov, A.; Koudryavtseva, S.; Lucazeau, G.; Roumyantseva, M. Structural Characterization of Nanocrystalline SnO2 by X-Ray and Raman Spectroscopy. J. Solid State Chem. 1998, 135, 78–85. [Google Scholar] [CrossRef]
- Yu, A.; Frech, R. Mesoporous Tin Oxides as Lithium Intercalation Anode Materials. J. Power Sources 2002, 104, 97–100. [Google Scholar] [CrossRef]
- Quan, W.; Hu, X.; Min, X.; Qiu, J.; Tian, R.; Ji, P.; Qin, W.; Wang, H.; Pan, T.; Cheng, S.; et al. A Highly Sensitive and Selective ppb-Level Acetone Sensor Based on a Pt-Doped 3D Porous SnO2 Hierarchical Structure. Sensors 2020, 20, 1150. [Google Scholar] [CrossRef]
- Félix, R.; Llobera-Vila, N.; Hartmann, C.; Klimm, C.; Hartig, M.; Wilks, R.G.; Bär, M. Preparation and in-system study of SnCl2 precursor layers: Towards vacuum-based synthesis of Pb-free perovskites. RSC Adv. 2018, 8, 67–73. [Google Scholar] [CrossRef]
- Sun, Z.; Baraissov, Z.; Dukes, C.A.; Dare, D.K.; Oseroff, T.; Thompson, M.O.; Muller, D.A.; Liepe, M.U. Surface oxides, carbides, and impurities on RF superconducting Nb and Nb3Sn: A comprehensive analysis. Supercond. Sci. Technol. 2023, 36, 115030. [Google Scholar] [CrossRef]
- Ahuja, P.; Sahu, V.; Ujjain, S.K.; Sharma, R.K.; Singh, G. Performance evaluation of Asymmetric Supercapacitor based on Cobalt manganite modified graphene nanoribbons. Electrochim. Acta 2014, 146, 429–436. [Google Scholar] [CrossRef]
- Ahuja, P.; Ujjain, S.K.; Kanojia, R. Electrochemical behaviour of manganese & ruthenium mixed oxide@ reduced graphene oxide nanoribbon composite in symmetric and asymmetric supercapacitor. Appl. Surf. Sci. 2018, 427, 102–111. [Google Scholar] [CrossRef]
- Chowdhury, A.; Biswas, S.; Sharma, V.; Halder, J.; Dhar, A.; Sundaram, B.; Dubey, B.; Burada, P.S.; Chandra, A. High performance magnetic pseudocapacitors—Direct correlation between specific capacitance and diffusion coefficients. Electrochim. Acta 2021, 397, 139252. [Google Scholar] [CrossRef]
- Van Aken, K.L.; McDonough, J.K.; Li, S.; Feng, G.; Chathoth, S.M.; Mamontov, E.; Fulvio, P.F.; Cummings, P.T.; Dai, S.; Gogotsi, Y. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. J. Physics Condens. Matter 2014, 26, 284104. [Google Scholar] [CrossRef] [PubMed]
- Aderyani, S.; Shah, S.A.; Masoudi, A.; Green, M.J.; Lutkenhaus, J.L.; Ardebili, H. Comparison of Nanoarchitecture to Porous Media Diffusion Models in Reduced Graphene Oxide/Aramid Nanofiber Electrodes for Supercapacitors. ACS Nano 2020, 14, 5314–5323. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Breitkopf, C. Determination of Diffusion Coefficients Using Impedance Spectroscopy Data. J. Electrochem. Soc. 2018, 165, E826–E831. [Google Scholar] [CrossRef]
- Yan, J.; Yuan, W.; Tang, Z.-Y.; Xie, H.; Mao, W.-F.; Ma, L. Synthesis and electrochemical performance of Li3V2(PO4)3−xClx/C cathode materials for lithium-ion batteries. J. Power Sources 2012, 209, 251–256. [Google Scholar] [CrossRef]
- Rakhi, R.; Alshareef, H. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes. J. Power Sources 2011, 196, 8858–8865. [Google Scholar] [CrossRef]
- Vinoth, V.; Wu, J.J.; Asiri, A.M.; Lana-Villarreal, T.; Bonete, P.; Anandan, S. SnO2-decorated multiwalled carbon nanotubes and Vulcan carbon through a sonochemical approach for supercapacitor applications. Ultrason. Sonochem. 2016, 29, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, H.; Sun, X.; Kang, X.; Zhang, Y.; Xu, C.; Zhang, Y. High Intercalation Pseudocapacitance of Free-Standing T-Nb2O5Nanowires@carbon Cloth Hybrid Supercapacitor Electrodes. J. Electrochem. Soc. 2017, 164, A820–A825. [Google Scholar] [CrossRef]
- Arunkumar, P.; Ashish, A.G.; Babu, B.; Sarang, S.; Suresh, A.; Sharma, C.H.; Thalakulam, M.; Shaijumon, M.M. Nb2O5/graphene nanocomposites for electrochemical energy storage. RSC Adv. 2015, 5, 59997–60004. [Google Scholar] [CrossRef]
- Wang, X.; Lee, P.S. Titanium doped niobium oxide for stable pseudocapacitive lithium ion storage and its application in 3 V non-aqueous supercapacitors. J. Mater. Chem. A 2015, 3, 21706–21712. [Google Scholar] [CrossRef]
- Ran, J.; Yang, T.; Liu, Y.; Feng, H.; Zhang, X.; Shi, H. Microwave radiation method for rapid synthesis of Nb2O5@MoS2 as high-performance supercapacitor electrode materials. J. Energy Storage 2023, 70, 108146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thirumal, V.; Babu, B.; Rajkumar, P.; Kim, J.-H.; Yoo, K. Enhancing Supercapacitor Performance with Zero-Dimensional Tin–Niobium Oxide Heterostructure Composite Spheres: Electrochemical Insights. Inorganics 2024, 12, 142. https://doi.org/10.3390/inorganics12060142
Thirumal V, Babu B, Rajkumar P, Kim J-H, Yoo K. Enhancing Supercapacitor Performance with Zero-Dimensional Tin–Niobium Oxide Heterostructure Composite Spheres: Electrochemical Insights. Inorganics. 2024; 12(6):142. https://doi.org/10.3390/inorganics12060142
Chicago/Turabian StyleThirumal, Vediyappan, Bathula Babu, Palanisamy Rajkumar, Jin-Ho Kim, and Kisoo Yoo. 2024. "Enhancing Supercapacitor Performance with Zero-Dimensional Tin–Niobium Oxide Heterostructure Composite Spheres: Electrochemical Insights" Inorganics 12, no. 6: 142. https://doi.org/10.3390/inorganics12060142
APA StyleThirumal, V., Babu, B., Rajkumar, P., Kim, J. -H., & Yoo, K. (2024). Enhancing Supercapacitor Performance with Zero-Dimensional Tin–Niobium Oxide Heterostructure Composite Spheres: Electrochemical Insights. Inorganics, 12(6), 142. https://doi.org/10.3390/inorganics12060142