Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Grinding
2.2. Ball Milling
2.3. Precursors
3. Experimental Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nair, G.B.; Swart, H.C.; Dhoble, S.J. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): Phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 2020, 109, 100622. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, H.; Liu, J.; Sun, Q.; Mou, Y.; Guo, X. Broad-Band and Stable Phosphor-in-Glass Enabling Ultrahigh Color Rendering for All-Inorganic High-Power WLEDs. ACS Appl. Electron. Mater. 2020, 2, 2929–2936. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Zhang, F.; Huang, S.; Wang, F.; Wang, X.; Jiao, H. High-performance ultra-narrow-band green-emitting phosphor LaMgAl11O19:Mn2+ for wide color-gamut WLED backlight displays. J. Mater. Chem. C 2022, 10, 7443–7448. [Google Scholar] [CrossRef]
- Li, J.; Yan, J.; Wen, D.; Khan, W.U.; Shi, J.; Wu, M.; Su, Q.; Tanner, P.A. Advanced red phosphors for white light-emitting diodes. J. Mater. Chem. C 2016, 4, 8611–8623. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Yin, S.; Wu, X.; You, H. Highly efficient green-emitting phosphors with high color rendering for WLEDs. J. Alloys Compd. 2022, 911, 165149. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Wang, T.; Wu, J.; Zhang, J.; Yu, S.; Zhang, M.; Zhao, L.; Wang, W. Ultra-bright green-emitting phosphors with an internal quantum efficiency of over 90% for high-quality WLEDs. Dalton Trans. 2021, 50, 4159–4166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Z.; Wang, N.; Zhou, Q.; Zhou, J.; Ma, L.; Wang, X.; Xu, Y.; Brik, M.G.; Dramićanin, M.D.; et al. Single-Crystal Red Phosphors: Enhanced Optical Efficiency and Improved Chemical Stability for wLEDs. Adv. Opt. Mater. 2020, 8, 1901512. [Google Scholar] [CrossRef]
- Leng, Z.; Bai, H.; Qing, Q.; He, H.; Hou, J.; Li, B.; Tang, Z.; Song, F.; Wu, H. A Zero-Thermal-Quenching Blue Phosphor for Sustainable and Human-Centric WLED Lighting. ACS Sustain. Chem. Eng. 2022, 10, 10966–10977. [Google Scholar] [CrossRef]
- Li, J.; Liang, Q.; Hong, J.-Y.; Yan, J.; Dolgov, L.; Meng, Y.; Xu, Y.; Shi, J.; Wu, M. White Light Emission and Enhanced Color Stability in a Single-Component Host. ACS Appl. Mater. Interfaces 2018, 10, 18066–18072. [Google Scholar] [CrossRef]
- Dai, P.; Wang, Q.; Xiang, M.; Chen, T.-M.; Zhang, X.; Chiang, Y.-W.; Chan, T.-S.; Wang, X. Composition-driven anionic disorder-order transformations triggered single-Eu2+-converted high-color-rendering white-light phosphors. Chem. Eng. J. 2020, 380, 122508. [Google Scholar] [CrossRef]
- Tyagi, A.; Nigam, S.; Sudarsan, V.; Majumder, C.; Vatsa, R.K.; Tyagi, A.K. Why Do Relative Intensities of Charge Transfer and Intra-4f Transitions of Eu3+ Ion Invert in Yttrium Germanate Hosts? Unravelling the Underlying Intricacies from Experimental and Theoretical Investigations. Inorg. Chem. 2020, 59, 12659–12671. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Oka, R.; Hayakawa, T. Eu3+ Site Distribution and Local Distortion of Photoluminescent Ca3WO6:(Eu3+, K+) Double Perovskites as High-Color-Purity Red Phosphors. Adv. Sci. 2023, 10, 2302559. [Google Scholar] [CrossRef] [PubMed]
- Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of Crystal Spectra of Rare-Earth Ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Sreena, T.S.; Raj, A.K.V.; Rao, P.P. Effects of charge transfer band position and intensity on the photoluminescence properties of Ca1.9M2O7:0.1Eu3+ (M = Nb, Sb and Ta). Solid State Sci. 2022, 123, 106783. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, R.; Vats, B.G.; Gamare, J.S.; Kadam, R.M. Inversion in usual excitation intensities from solid state phosphor and improved fluorescence of Eu3+ ion in type (IV) deep eutectic solvent. J. Lumin. 2021, 235, 118026. [Google Scholar] [CrossRef]
- Sreevalsa, S.; Ranjith, P.; Ahmad, S.; Sahoo, S.K.; Som, S.; Pandey, M.K.; Das, S. Host sensitized photoluminescence in Sr2.9-3x/2LnxAlO4F: 0.1 Eu3+ (Ln = Gd, Y) for innovative flexible lighting applications. Ceram. Int. 2020, 46, 21448–21460. [Google Scholar] [CrossRef]
- Zhao, Q.; Qian, B.; Wang, Y.; Duan, T.; Zou, H.; Song, Y.; Sheng, Y. Facile synthesis of CaO:Eu3+ and comparative study on the luminescence properties of CaO:Eu3+ and CaCO3:Eu3+. J. Lumin. 2022, 241, 118491. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y. The oxidation of copper sulfide minerals during grinding and their interactions with clay particles. Powder Technol. 2012, 230, 112–117. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, X.; Shi, H.; Jiang, P.; Cong, R.; Yang, T. Eu3+ and Tb3+ doped LiCaY5(BO3)6: Efficient red and green phosphors under UV or NUV excitations. J. Lumin. 2022, 242, 118598. [Google Scholar] [CrossRef]
- Sari, A.; Keddam, M.; Guittoum, A. Effect of iron impurity on structural development in ball-milled ZrO2–3mol% Y2O3. Ceram. Int. 2015, 41, 1121–1128. [Google Scholar] [CrossRef]
- Li, M.-X.; Zhao, S.-F.; Lu, Z.; Hirata, A.; Wen, P.; Bai, H.-Y.; Chen, M.; Schroers, J.; Liu, Y.; Wang, W.-H. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 2019, 569, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Chen, Q.; Jiang, K.; Feng, Z.; Lin, Z.; Yu, H.; He, G.; Zhang, J.; Jiang, X.; Zhang, X.; et al. Scaling of the strange-metal scattering in unconventional superconductors. Nature 2022, 602, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.G.; Lee, S.; Yu, H.S.; Zhang, H.R.; Liang, Y.J.; Zavalij, P.Y.; Chen, X.; James, R.D.; Bendersky, L.A.; Davydov, A.V.; et al. Tuning the hysteresis of a metal-insulator transition via lattice compatibility. Nat. Commun. 2020, 11, 3539. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Oh, J.H.; Bae, J.-S.; Lee, S. Effects of Heat Treatment on the Microstructure and Optical Properties of Sputtered GeO2 Thin Films. Adv. Eng. Mater. 2023, 25, 2300456. [Google Scholar] [CrossRef]
- Kim, H.; Nam, K.; Park, J.; Kang, M.; Bae, J.-S.; Hong, W.T.; Yang, H.K.; Jeong, J.H.; Oh, J.H.; Lee, S. Hydrogen-mediated manipulation of luminescence color in single-component Eu doped CaYAlSiO4 by defect passivation. J. Alloys Compd. 2023, 932, 167610. [Google Scholar] [CrossRef]
Samples | Grinding Time (min) | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | R-Factor |
---|---|---|---|---|
As prepared #1 | 5 | 3.484 | 2.467 | 2.284 |
10 | 3.448 | 2.367 | 2.260 | |
20 | 3.435 | 2.374 | 2.251 | |
As prepared #2 | 5 | 3.498 | 2.466 | 2.294 |
10 | 3.374 | 2.269 | 2.212 | |
20 | 3.428 | 2.352 | 2.249 |
Ball Milling Time | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | R-Factor |
---|---|---|---|
10 h | 3.474 | 2.531 | 2.295 |
5 h | 3.483 | 2.550 | 2.300 |
3 h | 3.493 | 2.614 | 2.307 |
1 h | 3.463 | 2.531 | 2.287 |
Pristine | 3.498 | 2.466 | 2.294 |
Precursors | Ω2 (10−20 cm2) | Ω4 (10−20 cm2) | R-Factor | |
---|---|---|---|---|
Al2O3 | Commercial | 3.498 | 2.466 | 2.294 |
Ball-milled | 3.502 | 2.415 | 2.298 | |
Al(NO3)3·9H2O | Commercial | 3.472 | 2.414 | 2.282 |
Solution | 3.355 | 2.121 | 2.225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.H.; Lee, Y.; Kim, J.; Hong, W.T.; Yang, H.K.; Kang, M.; Lee, S. Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis. Inorganics 2024, 12, 150. https://doi.org/10.3390/inorganics12060150
Oh JH, Lee Y, Kim J, Hong WT, Yang HK, Kang M, Lee S. Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis. Inorganics. 2024; 12(6):150. https://doi.org/10.3390/inorganics12060150
Chicago/Turabian StyleOh, Ju Hyun, Yookyoung Lee, Jihee Kim, Woo Tae Hong, Hyun Kyoung Yang, Mijeong Kang, and Seunghun Lee. 2024. "Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis" Inorganics 12, no. 6: 150. https://doi.org/10.3390/inorganics12060150
APA StyleOh, J. H., Lee, Y., Kim, J., Hong, W. T., Yang, H. K., Kang, M., & Lee, S. (2024). Effect of Synthesis Conditions on the Photoluminescent Properties of Si-Substituted CaYAlO4:Eu: Sources of Experimental Errors in Solid-State Synthesis. Inorganics, 12(6), 150. https://doi.org/10.3390/inorganics12060150