Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the Silica Nanoparticles
2.2. Incorporation of Methylene Blue
2.3. Characterization of the Nanoparticles
2.3.1. Size Distribution and Colloidal Stability
2.3.2. Study of the Porosity of the Particles
2.3.3. UV-Visible Studies
2.4. Singlet Oxygen Generation
2.4.1. Studies in Water
2.4.2. Studies in Methanol
2.5. Theoretical Description of the Monomeric and Dimeric Structures
3. Materials and Methods
3.1. Syntheses of the Materials
3.1.1. Uniform Stellate Silica Nanoparticles (u-ST)
3.1.2. Uniform Raspberry Silica Nanoparticles (u-RB)
3.1.3. Core–Shell–Corona csc-ST/PhS/RB
3.1.4. Core–Shell cs-ST/RB
3.1.5. Core–Shell cs-RB/r
3.2. Extraction of the Surfactant Using NH4NO3 as Washing Reagent
3.3. Incorporation of MB
3.4. Synthesis of RB@(MB@ST)
3.5. Characterization of the Samples
3.6. Luminescence Studies and Singlet Oxygen Generation
3.7. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Markham, M.J.; Wachter, K.; Agarwal, N.; Bertagnolli, M.M.; Chang, S.M.; Dale, W.; Diefenbach, C.S.M.; Rodriguez-Galindo, C.; George, D.J.; Gilligan, T.D.; et al. Clinical Cancer Advances 2020: Annual Report on Progress against Cancer from the American Society of Clinical Oncology. J. Clin. Oncol. 2020, 38, 1081–1101. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
- Foote, C.S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 1991, 54, 659. [Google Scholar] [CrossRef] [PubMed]
- Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Ribeiro, M.S.; Thomas, A.H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, J.; Fan, J.; Chao, H.; Peng, X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 2021, 50, 4185–4219. [Google Scholar] [CrossRef]
- Li, X.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy. Angew. Chem. Int. Ed. 2018, 57, 11522–11531. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarthi, U.; Giribabu, L. Photodynamic Therapy: Past, Present and Future. Chem. Record 2017, 17, 775–802. [Google Scholar] [CrossRef] [PubMed]
- Redmond, R.W.; Gamlin, J.N. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 1999, 70, 391–475. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.; Lorke, D.E.; Hasan, M.; Petroianu, G.A. Cellular and molecular actions of Methylene Blue in the nervous system. Med. Res. Rev. 2011, 31, 93–117. [Google Scholar] [CrossRef] [PubMed]
- Tardivo, J.P.; Del Giglio, A.; de Oliveira, C.S.; Gabrielli, D.S.; Junqueira, H.C.; Tada, D.B.; Severino, D.; de Fatima Turchiello, R.; Baptista, M.S. Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. Photodiagnosis Photodyn. Ther. 2005, 2, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Severino, D.; Junqueira, H.C.; Gugliotti, M.; Gabrielli, D.S.; Baptista, M.S. Influence of Negatively Charged Interfaces on the Ground and Excited State Properties of Methylene Blue. Photochem. Photobiol. 2003, 77, 459–468. [Google Scholar] [CrossRef] [PubMed]
- DeRosa, M.C.; Crutchley, R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Sass, M.D.; Caruso, C.J.; Axelrod, D.R. Accumulation of methylene blue by metabolizing erythrocytes. J. Lab. Clin. Med. 1967, 69, 447–455. [Google Scholar] [PubMed]
- Bongard, R.D.; Merker, M.P.; Shundo, R.; Okamoto, Y.; Roerig, D.L.; Linehan, J.H.; Dawson, C.A. Reduction of thiazine dyes by bovine pulmonary arterial endothelial cells in culture. Amer. J. Physiol. 1995, 269, L78–L84. [Google Scholar] [CrossRef] [PubMed]
- Olson, L.E.; Merker, M.P.; Patel, M.K.; Bongard, R.D.; Daum, J.M.; Johns, R.A.; Dawson, C.A. Cyanide increases reduction but decreases sequestration of methylene blue by endothelial cells. Annals Biomed. Eng. 2000, 28, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, D.; Belisle, E.; Severino, D.; Kowaltowski, A.J.; Baptista, M.S. Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions. Photochem. Photobiol. 2004, 79, 227–232. [Google Scholar] [CrossRef]
- Wagner, S.J.; Skripchenko, A.; Robinette, D.; Foley, J.W.; Cincotta, L. Factors affecting virus photoinactivation by a series of phenothiazine dyes. Photochem. Photobiol. 1998, 67, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Vallet-Regi, M.; Schuth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: Where are we after two decades? Chem. Soc. Rev. 2022, 51, 5365–5451. [Google Scholar] [CrossRef]
- Prieto-Montero, R.; Arbeloa, T.; Martinez-Martinez, V. Photosensitizer-Mesoporous Silica Nanoparticles Combination for Enhanced Photodynamic Therapy(dagger). Photochem. Photobiol. 2023, 99, 882–900. [Google Scholar] [CrossRef] [PubMed]
- Lérida-Viso, A.; Estepa-Fernández, A.; García-Fernández, A.; Martí-Centelles, V.; Martínez-Máñez, R. Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv. Drug Deliver. Rev. 2023, 201, 115049. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yang, Y.; Lu, J.; Lin, Y.; Feng, S.; Luo, X.; Di, D.; Wang, S.; Zhao, Q. Recent trends of mesoporous silica-based nanoplatforms for nanodynamic therapies. Coord. Chem. Rev. 2022, 469, 214687. [Google Scholar] [CrossRef]
- Makhadmeh, G.N.; Abdul Aziz, A.; Abdul Razak, K. The efficacy of methylene blue encapsulated in silica nanoparticles compared to naked methylene blue for photodynamic applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Fan, Y.; Zhang, P.; Zhang, X.; Zhou, Q.; Zhao, J.; Ren, L. Self-enriched mesoporous silica nanoparticle composite membrane with remarkable photodynamic antimicrobial performances. J. Col. Inter. Sci. 2020, 559, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, F.; Xu, N.; Yao, Q.; Wang, R.; Xie, X.; Zhang, F.; He, Y.; Shao, D.; Dong, W.F.; et al. Red-light-triggered self-destructive mesoporous silica nanoparticles for cascade-amplifying chemo-photodynamic therapy favoring antitumor immune responses. Biomaterials 2022, 281, 121368. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.H.; Kim, B.M.; Joe, A.; Han, H.W.; Chen, X.; Cheng, Z.; Jang, E.S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 2014, 35, 3309–3318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Xu, L.-L.; Jiang, J.-G.; Calin, N.; Lam, K.-F.; Zhang, S.-J.; Wu, H.-H.; Wu, G.-D.; Albela, B.; Bonneviot, L.; et al. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure. J. Amer. Chem. Soc. 2013, 135, 2427–2430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yang, T.Q.; Shan, B.Q.; Liu, P.C.; Peng, B.; Xue, Q.S.; Yuan, E.H.; Wu, P.; Albela, B.; Bonneviot, L. Dendritic and Core-Shell-Corona Mesoporous Sister Nanospheres from Polymer-Surfactant-Silica Self-Entanglement. Chem. Eur. J. 2018, 24, 478–486. [Google Scholar] [CrossRef] [PubMed]
- de Souza, E.S.J.M.; Hanchuk, T.D.; Santos, M.I.; Kobarg, J.; Bajgelman, M.C.; Cardoso, M.B. Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles. ACS Appl. Mater. Inter. 2016, 8, 16564–16572. [Google Scholar] [CrossRef] [PubMed]
- Sadasivan, S.; Fowler, C.E.; Khushalani, D.; Mann, S. Nucleation of MCM-41 nanoparticles by internal reorganization of disordered and nematic-like silica surfactant clusters. Angew. Chem. Int. Ed. 2002, 41, 2151–2153. [Google Scholar] [CrossRef]
- Pelluau, T.; Sene, S.; Garcia-Cirera, B.; Albela, B.; Bonneviot, L.; Larionova, J.; Guari, Y. Multifunctionalized Mesostructured Silica Nanoparticles Containing Mn2 Complex for Improved Catalase-Mimicking Activity in Water. Nanomaterials 2022, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pelluau, T.; Guari, Y.; Bonneviot, L.; Rodríguez-Pizarro, M.; Albela, B. Incorporation of methylene blue into mesoporous silica nanoparticles for singlet oxygen generation. New J. Chem. 2023, 47, 1861–1871. [Google Scholar] [CrossRef]
- Kobler, J.; Möller, K.; Bein, T. Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS Nano 2008, 2, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pérez, A.; Marbán, G. Visible Light Spectroscopic Analysis of Methylene Blue in Water; What Comes after Dimer? ACS Omega 2020, 5, 29801–29815. [Google Scholar] [CrossRef] [PubMed]
- Florence, N.; Naorem, H. Dimerization of methylene blue in aqueous and mixed aqueous organic solvent: A spectroscopic study. J. Mol. Liq. 2014, 198, 255–258. [Google Scholar] [CrossRef]
- Hemdan, S.S. The Shift in the Behavior of Methylene Blue toward the Sensitivity of Medium: Solvatochromism, Solvent Parameters, Regression Analysis and Investigation of Cosolvent on the Acidity Constants. J. Fluoresc. 2023, 33, 2489–2502. [Google Scholar] [CrossRef] [PubMed]
- Leonardo Marmo, M.; Juliana Pereira, L.; Adriana, L.; Lúcia, C.; Divinomar, S.; Maurício da Silva, B.; André Luiz, T.; Adriana Passarela, G.; Noboru, H.; Maira Regina, R.; et al. The Methylene Blue Self-aggregation in Water/Organic Solvent Mixtures: Relationship between Solvatochromic Properties and Singlet Oxygen Production. Orbital Elect. J. Chem. 2017, 9, 279–289. [Google Scholar]
- Saita, S.; Anzai, M.; Mori, N.; Kawasaki, H. Controlled aggregation of methylene blue in silica–methylene blue nanocomposite for enhanced 1O2 generation. Colloids Surf. A Physicochem. Engin. Aspects 2021, 617, 126360. [Google Scholar] [CrossRef]
- Toum Terrones, Y.; Torresán, M.F.; Mirenda, M.; Rodríguez, H.B.; Wolosiuk, A. Photoactive Red Fluorescent SiO2 Nanoparticles Based on Controlled Methylene Blue Aggregation in Reverse Microemulsions. Langmuir 2022, 38, 6786–6797. [Google Scholar] [CrossRef]
- Linger, C.; Lancel, M.; Port, M. Evaluation of relative efficiency of PDT photosensitizers in producing hydroxyl radicals and singlet oxygen in aqueous media using a UV–visible spectroscopy pNDA dosage. J. Photochem. Photobiol. B 2023, 241, 112664. [Google Scholar] [CrossRef]
- Thorning, F.; Henke, P.; Ogilby, P.R. Perturbed and Activated Decay: The Lifetime of Singlet Oxygen in Liquid Organic Solvents. J. Amer. Chem. Soc. 2022, 144, 10902–10911. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Bahri-Laleh, N.; Pareras, G.; Sadjadi, S.; Nekoomanesh-Haghighi, M.; Poater, A. Pd on nitrogen rich polymer–halloysite nanocomposite as an environmentally benign and sustainable catalyst for hydrogenation of polyalfaolefin based lubricants. J. Ind. Eng. Chem. 2021, 97, 441–451. [Google Scholar] [CrossRef]
- Poater, A.; Moradell, S.; Pinilla, E.; Poater, J.; Sola, M.; Martinez, M.A.; Llobet, A. A trinuclear Pt(II) compound with short Pt-Pt-Pt contacts. An analysis of the influence of π-π stacking interactions on the strength and length of the Pt-Pt bond. Dalton Trans. 2006, 9, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01; Gaussian Inc. Company: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
Sample | Size/nm a | MB Retention (%) b |
---|---|---|
MB@u-ST | 86 ± 7 | 100 |
MB@u-RB | 81 ± 6 | 67 |
MB@cs-RB/r | 108 ± 7 | 81 |
MB@cs-ST/RB | 99 ± 9 | 100 |
MB@csc-ST/PhS/RB | 91 ± 9 | 100 |
RB@(MB@ST) | 96 ± 8 | 100 |
Sample a | Stot b (m2·g−1) | Sext c (m2·g−1) | Sint d (m2·g−1) | Vint e (cm3·g−1) | ØBJH f (nm) | Øipv g (nm) |
---|---|---|---|---|---|---|
u-ST | 361 | n.a. h | n.a. h | n.a. h | ~3–15 nm | ~42 |
u-RB | 370 | 126 | 244 | 0.19 | 2.72 | ~50 |
cs-RB/r | 276 | 68 | 208 | 0.16 | 3.2 | >400 |
cs-ST/RB | 131 | 78 | 53 | 0.059 | 3.2 | ~42 |
csc-ST/PhS/RB | 638 | 102 | 536 | 0.32 | 2.5 | >500 |
RB@(MB@ST) | 66 | ~71 | ~0 | n.a. h | n.a. h | >500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Bonneviot, L.; Guari, Y.; Monnereau, C.; Zhang, K.; Poater, A.; Rodríguez-Pizarro, M.; Albela, B. Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer. Inorganics 2024, 12, 155. https://doi.org/10.3390/inorganics12060155
Xu J, Bonneviot L, Guari Y, Monnereau C, Zhang K, Poater A, Rodríguez-Pizarro M, Albela B. Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer. Inorganics. 2024; 12(6):155. https://doi.org/10.3390/inorganics12060155
Chicago/Turabian StyleXu, Jianan, Laurent Bonneviot, Yannick Guari, Cyrille Monnereau, Kun Zhang, Albert Poater, Montserrat Rodríguez-Pizarro, and Belén Albela. 2024. "Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer" Inorganics 12, no. 6: 155. https://doi.org/10.3390/inorganics12060155
APA StyleXu, J., Bonneviot, L., Guari, Y., Monnereau, C., Zhang, K., Poater, A., Rodríguez-Pizarro, M., & Albela, B. (2024). Matrix Effect on Singlet Oxygen Generation Using Methylene Blue as Photosensitizer. Inorganics, 12(6), 155. https://doi.org/10.3390/inorganics12060155